A photobioreactor in the form of a 245-m-long loop made of plexiglass tubes having an inner diameter of 2.6 cm was designed and constructed for outdoor culture of Spirulina. The loop was arranged in two planes, with 15 8-m-long tubes in each plane. In the upper plane, the tubes were placed in the vacant space between the ones of the lower plane. The culture recycle was performed either with two airlifts, one per plane, or with two peristaltic pumps. The power required for water recycle in the tubular photobioreactor, with a Reynolds number of 4000, was 3.93 x 10(-2) W m(-2). The photobioreactor contained 145 L of culture and covered an overall area of 7.8 m(2). The photobioreactor operation was computer controlled. Viscosity measurements performed on Spirulina cultures having different biomass concentrations showed non-Newtonian behavior displaying decreasing viscosity with an increasing shear rate. The performance of the two-plane photobioreactor was tested under the climatic conditions of central Italy (latitude 43.8 degrees N, longitude 11.3 degrees E). A biomass concentration of 3.5 g L(-1) was found to be adequate for outdoor culture of Spirulina. With a biomass concentration of 6.3 g L(-1), the biomass output rate significantly decreased. The net biomass output rate reached a mean value of 27.8 g m(-2) d(-1) in July; this corresponded to a net photosynthetic efficiency of 6.6% (based on visible irradiance).
The underwater tubular photobioreactor is a fully controlled outdoor system to study photosynthetic bacteria. Before growing bacteria cells outdoors, two modified van Niel medium (vN-A, vN-B) were tested under artificial light. During exponential growth, the specific growth rates were 0.0416 and 0.0434 h(-1), respectively; vN-B was chosen for outdoor experiments. The growth behavior of Rhodopseudomonas palustris was investigated under a natural light-dark cycle (sunrise-sunset, 15L/9D) and a forced light-dark cycle (9:00-19:00, 10L/14D). Relationships between solar radiations, daily growth rates, and biomass output rates were also investigated. After determining the elemental biomass molar composition and its combustion heat, some trends of photosynthetic efficiency (PE) were obtained over daylight. The PE trends were always of the oscillatory type, with the exception of that achieved at low biomass concentration. Under a natural light/dark cycle, the maximum PE (11.2%) was attained at sunset, while under a forced light/dark cycle, the highest PE (8.5%) was achieved in the morning. Three initial biomass concentrations were investigated (0.65, 1.01, and 1.54 g l(-1)). The stoichiometric equation for bacteria cells indicated that 87.7% of the carbon of acetic acid was converted to biomass and only 12.3% was lost as CO(2).
As part of a program to study the chemical composition of algal biomasses, the composition of the unsaponifiable matter of the lipids of ten algal species (fiveMyxophyceae and fiveChlorophyceae) was investigated. The total unsaponifiable content, its general composition, and the components of the hydrocarbon fraction are discussed in the present paper. The unsaponifiable content of green algae is constantly higher than that of the blue‐green ones, with the exception ofChlorella. In both algal classes, the major components are hydrocarbons and sterols. Blue‐green algae are richer in hydrocarbons, whereas the green ones contain higher amounts of sterols. In most of the species examined, at least 48 components are present in the hydrocarbon fraction. Each algal species shows a characteristic gas liquid chromatography pattern, but n‐C17 is always one of the most abundant components. Generally, the prokaryotic blue‐green algae show a simpler hydrocarbon composition than the eucaryotic green algae, which contain higher amounts of high mol wt components. Unsaturated hydrocarbons are generally present in very limited quantities, with the exception ofSpirulina sp. andChlorella, sp., which contain a C17 alkene. Green algae also contain appreciable amounts of a C27 monoene and of squalene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.