The remnant phase of a radio galaxy begins when the jets launched from an active galactic nucleus are switched off. To study the fraction of radio galaxies in a remnant phase, we take advantage of a $8.31$ deg $^2$ subregion of the GAMA 23 field which comprises of surveys covering the frequency range 0.1–9 GHz. We present a sample of 104 radio galaxies compiled from observations conducted by the Murchison Widefield Array (216 MHz), the Australia Square Kilometer Array Pathfinder (887 MHz), and the Australia Telescope Compact Array (5.5 GHz). We adopt an ‘absent radio core’ criterion to identify 10 radio galaxies showing no evidence for an active nucleus. We classify these as new candidate remnant radio galaxies. Seven of these objects still display compact emitting regions within the lobes at 5.5 GHz; at this frequency the emission is short-lived, implying a recent jet switch off. On the other hand, only three show evidence of aged lobe plasma by the presence of an ultra-steep-spectrum ( $\alpha<-1.2$ ) and a diffuse, low surface brightness radio morphology. The predominant fraction of young remnants is consistent with a rapid fading during the remnant phase. Within our sample of radio galaxies, our observations constrain the remnant fraction to $4\%\lesssim f_{\mathrm{rem}} \lesssim 10\%$ ; the lower limit comes from the limiting case in which all remnant candidates with hotspots are simply active radio galaxies with faint, undetected radio cores. Finally, we model the synchrotron spectrum arising from a hotspot to show they can persist for 5–10 Myr at 5.5 GHz after the jets switch of—radio emission arising from such hotspots can therefore be expected in an appreciable fraction of genuine remnants.
Abell 3266 is a massive and complex merging galaxy cluster that exhibits significant substructure. We present new, highly sensitive radio continuum observations of Abell 3266 performed with the Australian Square Kilometre Array Pathfinder (0.8–1.1 GHz) and the Australia Telescope Compact Array (1.1–3.1 GHz). These deep observations provide new insights into recently reported diffuse non-thermal phenomena associated with the intracluster medium, including a ‘wrong-way’ relic, a fossil plasma source, and an as-yet unclassified central diffuse ridge, which we reveal comprises the brightest part of a large-scale radio halo detected here for the first time. The ‘wrong-way’ relic is highly atypical of its kind: it exhibits many classical signatures of a shock-related radio relic, while at the same time exhibiting strong spectral steepening. While radio relics are generally consistent with a quasi-stationary shock scenario, the ‘wrong-way’ relic is not. We study the spectral properties of the fossil plasma source; it exhibits an ultrasteep and highly curved radio spectrum, indicating an extremely aged electron population. The larger scale radio halo fills much of the cluster centre, and presents a strong connection between the thermal and non-thermal components of the intracluster medium, along with evidence of substructure. Whether the central diffuse ridge is simply a brighter component of the halo, or a mini-halo, remains an open question. Finally, we study the morphological and spectral properties of the multiple complex radio galaxies in this cluster in unprecedented detail, tracing their evolutionary history.
Quantifying the energetics and lifetimes of remnant radio-loud active galactic nuclei (AGNs) is much more challenging than for active sources due to the added complexity of accurately determining the time since the central black hole switched off. Independent spectral modelling of remnant lobes enables the derivation of the remnant ratio, Rrem, (i.e. ‘off-time/source age’), however, the requirement of high-frequency (≳ 5 GHz) coverage makes the application of this technique over large-area radio surveys difficult. In this work we propose a new method, which relies on the observed brightness of backflow of Fanaroff-Riley type II lobes, combined with the Radio AGN in Semi-Analytic Environments (RAiSE) code, to measure the duration of the remnant phase. Sensitive radio observations of the remnant radio galaxy J2253-34 are obtained to provide a robust comparison of this technique with the canonical spectral analysis and modelling methods. We find that the remnant lifetimes modelled by each method are consistent; spectral modelling yields Rrem = 0.23 ± 0.02, compared to Rrem = 0.26 ± 0.02 from our new method. We examine the viability of applying our proposed technique to low-frequency radio surveys using mock radio source populations, and examine whether the technique is sensitive to any intrinsic properties of radio AGNs. Our results show that the technique can be used to robustly classify active and remnant populations, with the most confident predictions for the remnant ratio, and thus off-time, in the longest-lived radio sources (>50 Myr) and those at higher redshifts (z > 0.1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.