The physical effects reducing the damage threshold of dielectric films when exposed to multiple femtosecond pulses are investigated. The measured temperature increase of a Ta 2 O 5 film scales exponentially with the pulse fluence. A polarized luminescence signal is observed that depends quadratically on the pulse fluence and is attributed to twophoton excitation of self-trapped excitons that form after band-to-band excitation. The damage fluence decreases with increasing pulse number, but is independent of the repetition rate from 1 Hz to 1 kHz at a constant pulse number. The repetition rate dependence of the breakdown threshold is also measured for TiO 2 , HfO 2 , Al 2 O 3 , and SiO 2 films. A theoretical model is presented that explains these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.