We piloted a methodology for collecting and interpreting root cause—or environmental deficiency (ED)—information from Legionnaires’ disease (LD) outbreak investigation reports. The methodology included a classification framework to assess common failures observed in the implementation of water management programs (WMPs). We reviewed reports from fourteen CDC-led investigations between 1 January 2015 and 21 June 2019 to identify EDs associated with outbreaks of LD. We developed an abstraction guide to standardize data collection from outbreak reports and define relevant parameters. We categorized each ED according to three criteria: ED type, WMP-deficiency type, and source of deficiency. We calculated the prevalence of EDs among facilities and explored differences between facilities with and without WMPs. A majority of EDs identified (81%) were classified as process failures. Facilities with WMPs (n = 8) had lower prevalence of EDs attributed to plumbed devices (9.1%) and infrastructure design (0%) than facilities without WMPs (n = 6; 33.3% and 24.2%, respectively). About three quarters (72%) of LD cases and 81% of the fatalities in our sample originated at facilities without a WMP. This report highlights the importance of WMPs in preventing and mitigating outbreaks of LD. Building water system process management is a primary obstacle toward limiting the root causes of LD outbreaks. Greater emphasis on the documentation, verification, validation, and continuous program review steps will be important in maximizing the effectiveness of WMPs.
Background Adenovirus (AdV) is a common cause of acute respiratory illness (ARI). Multiple respiratory AdV types have been identified in humans, but it remains unclear which are the most common in U.S. children with ARI. Methods We conducted a multicenter, prospective viral surveillance study at seven U.S. children’s hospitals, the New Vaccine Surveillance Network, during 12/1/16–11/30/19, prior to the COVID-19 pandemic. Children < 18 years of age seen in the emergency department or hospitalized with fever and/or respiratory symptoms were enrolled, and mid-turbinate nasal +/- throat swabs were tested using multiplex respiratory pathogen assays or real time polymerase chain reaction (PCR) test for AdV, respiratory syncytial virus (RSV), human metapneumovirus, rhinovirus/enterovirus (RV), influenza, parainfluenza viruses, and endemic coronaviruses. AdV-positive specimens were subsequently typed using single-plex qPCR assays targeting sequences in the hexon gene specific for types 1-7, 11, 14, 16 and 21. Demographics, clinical characteristics, and outcomes were compared between AdV types. Results Of 29,381 enrolled children, 2,106 (7.2%) tested positive for AdV. The distribution of types among the 1,330 (63.2%) successfully typed specimens were as follows: 31.7% AdV-2, 28.9% AdV-1, 15.3% AdV-3, 7.9% AdV-5, 5.9% AdV-7, 1.4% AdV-4, 1.2% AdV-6, 0.5% AdV-14, 0.2% AdV-21, 0.1% AdV-11, and 7.0% ≥1 AdV type. Most children with AdV-1 or AdV-2 detection were < 5 years of age (Figure 1a). Demographic and clinical characteristics varied by AdV types, including age, race/ethnicity, smoke exposure, daycare/school attendance, and hospitalization (Table 1). Co-detection with other viruses was common among all AdV types, with RV and RSV being the most frequently co-detected (Figure 1b). Fever and cough were the most common symptoms for all AdV types (Figure 2). Children with AdV-7 detected as single pathogen had higher odds of hospitalization (adjusted odds ratio 6.34 [95% CI: 3.10, 12.95], p= 0.027). Conclusion AdV-2 and AdV-1 were the most frequently detected AdV types among children over the 3-year study period. Notable clinical heterogeneity of the AdV types warrants further surveillance studies to identify AdV types that could be targeted for pediatric vaccine development. Disclosures Rangaraj Selvarangan, BVSc, PhD, D(ABMM), FIDSA, F(AAM), BioFire: Grant/Research Support|Luminex: Grant/Research Support John Williams, MD, GlaxoSmithKline: Advisor/Consultant|Quidel: Advisor/Consultant Mary A. Staat, MD, MPH, Centers for Disease Control and Prevention: Grant/Research Support|Cepheid: Grant/Research Support|National Institute of Health: Grant/Research Support|Uptodate: Royalties Christopher J Harrison, MD, Astellas: Grant/Research Support|GSK: Grant/Research Support|Merck: Grant/Research Support|Pediatric news: Honoraria|Pfizer: Grant/Research Support Mary E. Moffatt, M.D., Becton and Dickinson and Company: Stocks/Bonds|Biogen: Stocks/Bonds|Coloplast B: Stocks/Bonds|Express Scripts: Stocks/Bonds|Novo Nordisk A/S Spons ADR: Stocks/Bonds|Novo Nordisk A/S-B: Stocks/Bonds|Steris PLC: Stocks/Bonds|Stryker Corp: Stocks/Bonds|Thermo Fisher Scientific: Stocks/Bonds Geoffrey A. Weinberg, MD, Merck & Co.: Honoraria|Merck & Co.: Honoraria for composing and reviewing textbook chapters, Merck Manual of Therapeutics Janet A. Englund, MD, AstraZeneca: Advisor/Consultant|AstraZeneca: Grant/Research Support|GlaxoSmithKline: Grant/Research Support|Meissa Vaccines: Advisor/Consultant|Merck: Grant/Research Support|Pfizer: Grant/Research Support|Sanofi Pasteur: Advisor/Consultant Natasha B. Halasa, MD, Quidel: Grant/Research Support|Quidel: equipment donation|Sanofi: Grant/Research Support|Sanofi: HAI testing and vaccine donation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.