Covalent adaptable networks (CANs) are covalently cross-linked polymers that may be reshaped via cross-linking and/or strand exchange at elevated temperatures. They represent an exciting and rapidly developing frontier in polymer science for their potential as stimuli-responsive materials and to make traditionally nonrecyclable thermosets more sustainable. CANs whose cross-links undergo exchange via associative intermediates rather than dissociating to separate reactive groups are termed vitrimers. Vitrimers were postulated to be an attractive subset of CANs, because associative cross-link exchange mechanisms maintain the original cross-link density of the network throughout the exchange process. As a result, associative CANs demonstrate a gradual, Arrhenius-like reduction in viscosity at elevated temperatures while maintaining mechanical integrity. In contrast, CANs reprocessed by dissociation and reformation of cross-links have been postulated to exhibit a more rapid decrease in viscosity with increasing temperature. Here, we survey the stress relaxation behavior of all dissociative CANs for which variable temperature stress relaxation or viscosity data are reported to date. All exhibit an Arrhenius relationship between temperature and viscosity, as only a small percentage of the cross-links are broken instantaneously under typical reprocessing conditions. As such, dissociative and associative CANs show nearly identical reprocessing behavior over broad temperature ranges typically used for reprocessing. Given that the term vitrimer was coined to highlight an Arrhenius relationship between viscosity and temperature, in analogy to vitreous glasses, we discourage its continued use to describe associative CANs. The realization that the cross-link exchange mechanism does not greatly influence the practical reprocessing behavior of most CANs suggests that exchange chemistries can be considered with fewer constraints, focusing instead on their activation parameters, synthetic convenience, and application-specific considerations.
By judiciously modulating the ring strain and sterics, we developed a class of disubstituted cyclopropenes that selectively underwent single monomer addition in ring-opening metathesis but readily underwent alternating ring-opening metathesis polymerization with low-strain cyclic olefins in a living fashion. The substituents on cyclopropenes effectively inhibited homoaddition and prevented secondary metathesis on the polymer backbone. The resulting polymers had controllable molecular weights and end groups, very low dispersities, and high regularity in microstructure under optimized conditions. (1)H and (13)C NMR spectroscopy and MALDI-TOF MS showed a rigorously alternating sequence. Interestingly, disubstituted cyclopropenes were found to present zero-order kinetics, indicating their rapid single addition and the rate-determining ring opening of the low-strain olefin.
The locations and sequence of discrete monomers along a polymer chain can affect polymer properties and behaviors but are challenging to control even in living polymerizations. Xia and co-workers report selective single additions of a type of cyclopropene to precisely place various functional moieties at desired locations in a narrow-disperse homopolymer or block copolymer chain, opening the door to precise synthesis of polymer structures and architectures and thus control of polymer properties and self-assembly.
Living ROMP has become an important technique for preparing well-controlled, highly functional polymers; however, installing functional groups at the end of living ROMP polymers is not as straightforward as ROMP itself. We report a simple, efficient strategy to introduce functionalities at the chain end of living polynorbornenes via highly selective single addition of disubstituted 1,1-cyclopropenes (CPEs) with no homopropagation. Unlike many other methods for ROMP chain end functionalization, our method does not result in catalyst termination, allowing for further functionalization after CPE addition. The remarkable reactivity of such CPEs allowed for quantitative chain end functionalization to install a variety of useful functionalities, including halides, aldehydes, ketones, amines, and dyes, without using a large excess of CPEs. These polymer chain ends can be readily modified using a range of postpolymerization modifications.
We report the synthesis of degradable polyacetals and polyketals with controlled molecular weights and low dispersities using alternating ring-opening metathesis polymerization (AROMP) of 1,1-disubstituted cyclopropenes and dioxepins. Under optimized conditions, high degrees of alternation and controlled polymerization were achieved between nonpropagating cyclopropenes and low-strain dioxepins. The high degrees of alternation allowed the resulting polymers to fully degrade into small molecules under acidic conditions at variable rates depending on the acetal/ketal structures. This synthetic strategy illustrates the use of AROMP to incorporate functionalities into both the polymer backbone as well as the side chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.