Lewis
base directed α,α-dehydrogenation of 2-(methoxymethyl)aniline
gives a cationic iridium(III) alkoxycarbene. This alkoxycarbene is
found to be subject to pyridine-promoted C–O bond cleavage
in the formation of a delocalized iridium benzylidene. X-ray diffraction
and DFT calculations support a structural distortion away from a classic
benzylidene structure stemming from azaquinone methide character.
Treatment of the iridium azaquinone methide with ethylene results
in formal ethylene insertion into the vinylic C–H bond, demonstrating
an unusual mechanism for net C–C bond formation via benzylic
C–O cleavage.
Nucleophilic aromatic substitution (SNAr) of fluorobenzene by morpholine at a bis(diphenylphosphino)pentane-supported ruthenim complex is investigated as a model system for π-arene catalysis through the synthesis and full characterization of proposed...
Parallel extraction of headspace volatiles from multiwell plates using sorbent sheets (HS-SPMESH) followed by direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) can be used as a rapid alternative to solid-phase micro-extraction (SPME) gas-chromatography mass-spectrometry (GC-MS) for trace level volatile analyses. However, an earlier validation study of SPMESH-DART-MS using 3-isobutyl-2-methoxypyrazine (IBMP) in grape juice showed poor correlation between SPMESH-DART-MS and a gold standard SPME-GC-MS around the compound’s odor detection threshold (<10 ng/kg) in grape juice, and lacked sufficient sensitivity to detect IBMP at this concentration in grape homogenate. In this work, we report on the development and validation of an improved SPMESH extraction approach that lowers the limit of detection (LOD < 0.5 ng/kg), and regulates crosstalk between wells (<0.5%) over a calibration range of 0.5–100 ng/kg. The optimized SPMESH-DART-MS method was validated using Cabernet Sauvignon and Merlot grape samples harvested from commercial vineyards in the central valley of California (n = 302) and achieved good correlation and agreement with SPME-GC-MS (R2 = 0.84) over the native range of IBMP (<0.5–20 ng/kg). Coupling of SPMESH to a lower resolution triple quadrupole (QqQ)-MS via a new JumpShot-HTS DART source also achieved low ng/kg detection limits, and throughput was improved through positioning stage optimizations which reduced time spent on intra-well SPMESH areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.