Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here, we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets and MED1-IDR droplets can compartmentalize and concentrate transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in control of key cell identity genes.
Gene expression is controlled by transcription factors (TFs) that consist of DNA-binding domains (DBDs) and activation domains (ADs). The DBDs have been well-characterized, but little is known about the mechanisms by which ADs effect gene activation. Here we report that diverse ADs form phase-separated condensates with the Mediator coactivator. For the OCT4 and GCN4 TFs, we show that the ability to form phase-separated droplets with Mediator in vitro and the ability to activate genes in vivo are dependent on the same amino acid residues. For the estrogen receptor (ER), a ligand-dependent activator, we show that estrogen enhances phase separation with Mediator, again linking phase separation with gene activation. These results suggest that diverse TFs can interact with Mediator through the phase-separating capacity of their ADs and that formation of condensates with Mediator is involved in gene activation.
Eight types of short-chain lysine (Lys) acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and β-hydroxybutyrylation. Emerging evidence suggest that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, acylation “reader” proteins that mediate the effects of different acylations, and their physiological functions, including in signal-dependent gene activation, spermatogenesis, tissue injury and metabolic-induced stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by metabolism of the different acyl-CoA forms, which in turn modulate the regulation of gene expression.
SUMMARY Acetylation of histones at DNA regulatory elements plays a critical role in transcriptional activation. Histones are also modified by other acyl moieties, including crotonyl, yet the mechanisms that govern acetylation versus crotonylation and the functional consequences of this “choice” remain unclear. We show that the coactivator p300 has both crotonyltransferase and acetyltransferase activities and that p300-catalyzed histone crotonylation directly stimulates transcription to a greater degree than histone acetylation. Levels of histone crotonylation are regulated by the cellular concentration of crotonyl-CoA, which can be altered through genetic and environmental perturbations. In a cell-based model of transcriptional activation, increasing or decreasing the cellular concentration of crotonyl-CoA leads to enhanced or diminished gene expression, respectively, which correlates with the levels of histone crotonylation flanking the regulatory elements of activated genes. Our findings support a general principle wherein differential histone acylation (i.e. acetylation versus crotonylation) couples cellular metabolism to the regulation of gene expression.
The synthesis of pre-mRNA by RNA polymerase II (Pol II) involves the formation of a transcription initiation complex and a transition to an elongation complex 1 – 4 . The large subunit of Pol II contains an intrinsically disordered C-terminal domain (CTD), which is phosphorylated by cyclin-dependent kinases (CDKs) during the initiation-to-elongation transition, thus influencing the CTD’s interaction with different components of the initiation or the RNA splicing apparatus ( Fig. 1a ) 5 , 6 . Recent observations suggest that this model provides only a partial picture of the effects of CTD phosphorylation. Both the transcription initiation machinery and the splicing machinery can form phase-separated condensates containing large numbers of component molecules; hundreds of Pol II and Mediator molecules are concentrated in condensates at super-enhancers 7 , 8 and large numbers of splicing factors are concentrated in nuclear speckles, some of which occur at highly active transcription sites 9 – 12 . Here we investigate whether phosphorylation of the CTD regulates its incorporation into phase-separated condensates associated with transcription initiation and splicing. We find that the hypophosphorylated Pol II CTD is incorporated into Mediator condensates and that phosphorylation by regulatory CDKs reduces this incorporation. We also find that the hyperphosphorylated CTD is preferentially incorporated into condensates formed by splicing factors. These results suggest that Pol II CTD phosphorylation drives an exchange from condensates involved in transcription initiation to those involved in RNA processing and implicates phosphorylation as a mechanism to regulate condensate preference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.