X-ray computed tomography (CT) is currently one of the most powerful, noninvasive, clinical in vivo imaging techniques, which has resulted from advances in both X-ray device and contrast enhancement technologies. The present study demonstrates, for the first time, that metal tungstates (such as CaWO) are promising contrast agents for X-ray, radiation, and CT imaging, because of the high X-ray mass attenuation of tungsten (W). We have developed a method of formulation, in which CaWO (CWO) nanoparticles (NPs) are encapsulated within a biocompatible poly(ethylene glycol-b-d,l-lactic acid) (PEG-PLA) block copolymer (BCP) capsule. We show that these PEG-PLA-encapsulated CWO NPs (170 ± 10 nm hydrodynamic diameter) produce a higher CT contrast (by a factor of about 2) than commercial iodine-based radiocontrast agents (e.g., Iohexol) at identical molar concentrations of W or I atoms. PEG-PLA-coated CWO NPs are chemically stable and completely nontoxic. It was confirmed that the maximum tolerated dose (MTD) of this material in mice is significantly higher (250 ± 50 mg per kg body weight following a single intravenous (IV) administration) than, for instance, commercially available dextran-coated iron oxide nanoparticles that are currently used clinically as MRI contrast agents (MTD in mice ≈ 168 mg/kg per dose IV). IV-injected PEG-PLA/CWO NPs caused no histopathologic damage in major excretory organs (heart, liver, lungs, spleen, and kidney). When an IV dose of 100 mg/kg was given to mice, the blood circulation half-life was measured to be about 4 h, and more than 90% of the NPs were cleared from the mice within 24 h via the renal and hepatobiliary systems. When intratumorally administered, PEG-PLA-coated CWO NPs showed complete retention in a tumor-bearing mouse model (measurements were made up to 1 week). These results suggest that PEG-PLA-coated CWO NPs are promising materials for use in CT contrast.
Intraperitoneal (IP) chemotherapy is a promising post-surgical therapy of ovarian cancer, but the full potential is yet to be realized. To facilitate IP chemotherapy of ovarian cancer, we developed an in-situ crosslinkable hydrogel depot containing paclitaxel (PTX) nanocrystals (PNC). PNC suppressed SKOV3 cell proliferation more efficiently than microparticulate PTX precipitates (PPT), and the gel containing PNC (PNC-gel) showed a lower maximum tolerated dose than PPT-containing gel (PPT-gel) in mice, indicating greater dissolution and cellular uptake of PNC than PPT. A single IP administration of PNC-gel extended the survival of tumor-bearing mice significantly better than Taxol, but PPT-gel did not. These results support the advantage of PNC over PPT and demonstrate the promise of a gel depot as an IP drug delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.