Background As a result of the overwhelming proportion of medication errors occurring each year, there has been an increased focus on developing medication error prevention strategies. Recent advances in electronic health record (EHR) technologies allow institutions the opportunity to identify medication administration error events in real time through computerized algorithms. MED.Safe, a software package comprising medication discrepancy detection algorithms, was developed to meet this need by performing an automated comparison of medication orders to medication administration records (MARs). In order to demonstrate generalizability in other care settings, software such as this must be tested and validated in settings distinct from the development site. Objective The purpose of this study is to determine the portability and generalizability of the MED.Safe software at a second site by assessing the performance and fit of the algorithms through comparison of discrepancy rates and other metrics across institutions. Methods The MED.Safe software package was executed on medication use data from the implementation site to generate prescribing ratios and discrepancy rates. A retrospective analysis of medication prescribing and documentation patterns was then performed on the results and compared to those from the development site to determine the algorithmic performance and fit. Variance in performance from the development site was further explored and characterized. Results Compared to the development site, the implementation site had lower audit/order ratios and higher MAR/(order + audit) ratios. The discrepancy rates on the implementation site were consistently higher than those from the development site. Three drivers for the higher discrepancy rates were alternative clinical workflow using orders with dosing ranges; a data extract, transfer, and load issue causing modified order data to overwrite original order values in the EHRs; and delayed EHR documentation of verbal orders. Opportunities for improvement were identified and applied using a software update, which decreased false-positive discrepancies and improved overall fit. Conclusions The execution of MED.Safe at a second site was feasible and effective in the detection of medication administration discrepancies. A comparison of medication ordering, administration, and discrepancy rates identified areas where MED.Safe could be improved through customization. One modification of MED.Safe through deployment of a software update improved the overall algorithmic fit at the implementation site. More flexible customizations to accommodate different clinical practice patterns could improve MED.Safe’s fit at new sites.
BACKGROUND As a result of the overwhelming proportion of medication errors occurring each year, there has been an increased focus on developing medication error prevention strategies. Recent advances in electronic health record (EHR) technologies allows institutions the opportunity to identify medication administration error (MAE) events in real-time through computerized algorithms. MED.Safe, a software package comprised of medication discrepancy detection algorithms, was developed to meet this need by performing an automated comparison of medication orders to administration records. In order to demonstrate generalizability in other care settings, software such as this must be tested and validated in settings distinct from the development site. OBJECTIVE To determine the portability and generalizability of the MED.Safe software at a second site by assessing the performance and fit of the algorithms through comparison of discrepancy rates and other metrics across institutions. METHODS The MED.Safe software package was executed on medication use data from the implementation site to generate prescribing ratios and discrepancy rates. A retrospective analysis of medication prescribing and documentation patterns was then performed on the results and compared to those from the development site to determine the algorithmic performance and fit. Variance in performance from the development site was further explored and characterized. RESULTS Compared to the development site, the implementation site had lower Audit/order ratios and higher MAR/(Order+Audit) ratios. The discrepancy rates on the implementation site were consistently higher than those from the development site. Three drivers for the higher discrepancy rates included alternative clinical workflow using orders with dosing ranges, a data extract, transfer, and load issue causing modified order data to overwrite original order values in the EHRs, and delayed EHR documentation of verbal orders. Opportunities for improvement were identified and applied using a software update, which decreased false positive discrepancies and improved overall fit. CONCLUSIONS The execution of MED.Safe at a second site was feasible and effective in the detection of medication administration discrepancies. A comparison of medication ordering, administration, and discrepancy rates identified areas where MED.Safe could be improved through customization. One modification of MED.Safe through deployment of a software update improved the overall algorithmic fit at the implementation site. More flexible customizations to accommodate different clinical practice patterns could improve MED.Safe’s fit at new sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.