[1] Meaningful quantification of data and structural uncertainties in conceptual rainfallrunoff modeling is a major scientific and engineering challenge. This paper focuses on the total predictive uncertainty and its decomposition into input and structural components under different inference scenarios. Several Bayesian inference schemes are investigated, differing in the treatment of rainfall and structural uncertainties, and in the precision of the priors describing rainfall uncertainty. Compared with traditional lumped additive error approaches, the quantification of the total predictive uncertainty in the runoff is improved when rainfall and/or structural errors are characterized explicitly. However, the decomposition of the total uncertainty into individual sources is more challenging. In particular, poor identifiability may arise when the inference scheme represents rainfall and structural errors using separate probabilistic models. The inference becomes ill-posed unless sufficiently precise prior knowledge of data uncertainty is supplied; this ill-posedness can often be detected from the behavior of the Monte Carlo sampling algorithm. Moreover, the priors on the data quality must also be sufficiently accurate if the inference is to be reliable and support meaningful uncertainty decomposition. Our findings highlight the inherent limitations of inferring inaccurate hydrologic models using rainfall-runoff data with large unknown errors. Bayesian total error analysis can overcome these problems using independent prior information. The need for deriving independent descriptions of the uncertainties in the input and output data is clearly demonstrated.
[1] The lack of a robust framework for quantifying the parametric and predictive uncertainty of conceptual rainfall-runoff (CRR) models remains a key challenge in hydrology. The Bayesian total error analysis (BATEA) methodology provides a comprehensive framework to hypothesize, infer, and evaluate probability models describing input, output, and model structural error. This paper assesses the ability of BATEA and standard calibration approaches (standard least squares (SLS) and weighted least squares (WLS)) to address two key requirements of uncertainty assessment: (1) reliable quantification of predictive uncertainty and (2) reliable estimation of parameter uncertainty. The case study presents a challenging calibration of the lumped GR4J model to a catchment with ephemeral responses and large rainfall gradients. Postcalibration diagnostics, including checks of predictive distributions using quantile-quantile analysis, suggest that while still far from perfect, BATEA satisfied its assumed probability models better than SLS and WLS. In addition, WLS/SLS parameter estimates were highly dependent on the selected rain gauge and calibration period. This will obscure potential relationships between CRR parameters and catchment attributes and prevent the development of meaningful regional relationships. Conversely, BATEA provided consistent, albeit more uncertain, parameter estimates and thus overcomes one of the obstacles to parameter regionalization. However, significant departures from the calibration assumptions remained even in BATEA, e.g., systematic overestimation of predictive uncertainty, especially in validation. This is likely due to the inferred rainfall errors compensating for simplified treatment of model structural error.Citation: Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resour. Res.,
[1] This study explores the decomposition of predictive uncertainty in hydrological modeling into its contributing sources. This is pursued by developing data-based probability models describing uncertainties in rainfall and runoff data and incorporating them into the Bayesian total error analysis methodology (BATEA). A case study based on the Yzeron catchment (France) and the conceptual rainfall-runoff model GR4J is presented. It exploits a calibration period where dense rain gauge data are available to characterize the uncertainty in the catchment average rainfall using geostatistical conditional simulation. The inclusion of information about rainfall and runoff data uncertainties overcomes ill-posedness problems and enables simultaneous estimation of forcing and structural errors as part of the Bayesian inference. This yields more reliable predictions than approaches that ignore or lump different sources of uncertainty in a simplistic way (e.g., standard least squares). It is shown that independently derived data quality estimates are needed to decompose the total uncertainty in the runoff predictions into the individual contributions of rainfall, runoff, and structural errors. In this case study, the total predictive uncertainty appears dominated by structural errors. Although further research is needed to interpret and verify this decomposition, it can provide strategic guidance for investments in environmental data collection and/or modeling improvement. More generally, this study demonstrates the power of the Bayesian paradigm to improve the reliability of environmental modeling using independent estimates of sampling and instrumental data uncertainties.
Risk assessment requires a description of the probabilistic properties of hydrological variables. In a number of cases, this description is made on a single variable, whereas most hydrological events are intrinsically multivariate. In this context, copulas have recently received attention in order to derive a multivariate frequency analysis. After a reminder of the general results in the field of multivariate extreme value theory, the paper gives a description of a very simple copula, the Gaussian copula. Four case studies demonstrate its usefulness in the contexts of field significance determination, regional risk analysis, Discharge-Duration-Frequency (QdF) models with design hydrograph derivation and regional frequency analysis. The limitations and potential errors related to this statistical tool are also highlighted.
Discharge time series in rivers and streams are usually based on simple stage-discharge relations calibrated using a set of direct stage-discharge measurements called gaugings. Bayesian inference recently emerged as a most promising framework to build such hydrometric rating curves accurately and to estimate the associated uncertainty. In addition to providing the rigorous statistical framework necessary to uncertainty analysis, the main advantage of the Bayesian analysis of rating curves arises from the quantitative assessment of (i) the hydraulic controls that govern the stage-discharge relation, and of (ii) the individual uncertainties of available gaugings, which often differ according to the discharge measurement procedure and the flow conditions. In this paper, we introduce the BaRatin method for the Bayesian analysis of stationary rating curves and we apply it to three typical cases of hydrometric stations with contrasted flow conditions and variable abundance of hydraulic knowledge and gauging data. The results exemplify that the thorough analysis of hydraulic controls and the quantification of gauging uncertainties are required to obtain reliable and physically sound results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.