The role played by supercritical carbon dioxide used as a dispersant medium in the synthesis of polyurethane particles has been investigated. High-temperature-high-pressure in situ infrared spectroscopic measurements combined with ab initio calculations were performed to investigate the hydroxyl stretching vibrations of ethylene glycol (EG) and 1,4-butanediol (BD), two monomers commonly used in the field of step growth polymerization. Specific interactions between the diols and CO2 have been put in evidence. While the structural characteristics of EG and BD are very similar--both diols have a gauche conformation due to an internal H-bond between the two hydroxyl functions--they behave differently in the presence of dense CO2. In the case of EG, this internal H-bond is broken, allowing the diol and CO2 to form a complex through the conjunction of a Lewis acid-Lewis base (LA-LB) interaction and a new H-bond. When BD complexes to CO2, this internal H-bond remains and is even reinforced indirectly by the LA-LB interaction occurring between the two moieties. In both cases, such a complex formation induces a polarization of the hydroxyl groups and consequently an increase of their nucleophilicity.
A new range of end‐functionalized poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate)s was synthesized by ATRP. Such macromonomers were used as reactive and steric stabilizers for the preparation of original core‐shell polyurethane particles in supercritical carbon dioxide. The nature of the chain end functionality, as well as the molar mass of the reactive stabilizer, were varied in order to investigate the role of such parameters on the properties of the resulting materials. Due to the low surface energy of PFDA combined with the high surface roughness induced by the specific microstructure of particles deposited on a silica plate, PUR materials exhibited super‐hydrophobic behavior with a water CA above 150°.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.