The nature of chemical bonding in the complex carbides Sc3[Fe(C2)2] (1) and Sc3[Co(C2)2] (2) has been explored by combined experimental and theoretical charge density studies. The structures of these organometallic carbides contain one-dimensional infinite TC4 (T = Fe, Co) ribbons embedded in a scandium matrix. Bonding in 1 and 2 was studied experimentally by multipolar refinements based on high-resolution X-ray data and compared to scalar-relativistic electronic structure calculations using the augmented spherical wave method. Besides substantial covalent T-C bonding within the TC4 ribbons, one also observes discrete Sc-C bonds of noticeable covalent character. Furthermore, our study highlights that even tiny differences in the electronic band structure of solids might be faithfully recovered in the properties of the Laplacian of the experimental electron density. In our case, the increase of the Fermi level in the organometallic Co(d9) carbide 2 relative to its isotypic Fe(d8) species 1 is reflected in the charge density picture by a significant change in the polarization pattern displayed by valence shell charge concentrations of the transition metal centers in the TC4 units. Hence, precise high-resolution X-ray diffraction data provide a reliable tool to discriminate and analyze the local electronic structures of isotypic solids, even in the presence of a severe coloring problem (Z(Fe)/Z(Co) = 26/27).
The nitrile ligands in trans-[PtX2(PhCN)2] (X = Cl, Br, I) undergo sequential 1,3 dipolar cycloadditions with nitrones R1R2C=N+(Me)-O(-) (R1 = H, R2 = Ph; R1 = CO2Et, R2 = CH2CO2Et) to selectively form the Delta4-1,2,4-oxadiazoline complexes trans-[PtX2(PhCN) (N=C(Ph)-O-N(Me)-CR1R2)] or trans-[PtX2(N=C(Ph)-O-N(Me)-CR1R2)2] in high yields. The reactivity of the mixed ligand complexes trans-[PtX2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] towards oxidation and ligand substitution was studied in more detail. Oxidation with Cl2 or Br2 provides the Pt(IV) species trans-[PtX2Y2(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] (X, Y = Cl, Br). The mixed halide complex (X = Cl, Y = Br) undergoes halide scrambling in solution to form trans-[PtX(4-n)Yn(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] as a statistical mixture. Ligand substitution in trans-[PtCl2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] allows for selective replacement of the coordinated nitrile by nitrogen heterocycles such as pyridine, DMAP or 1-benzyl-2-methylimidazole to produce mixed ligand Pt(II) complexes of the type trans- [PtX2(heterocycle)(N=C(Ph)-O-N(Me)-CR1R2)]. All compounds were characterised by elemental analysis, mass spectrometry, IR and 1H, 13C and 195Pt NMR spectroscopy. Single-crystal X-ray structural analysis of (R,S)-trans-[PtBr2(N=C(Ph)-O-N(Me)-CH(Ph))2] and trans-[PtCl2(C5H5N)(N=C(Ph)-O-N(Me)-CH(Ph))] confirms the molecular structure and the trans configuration of the heterocycles relative to each other.
Structure D 2000Experimental Electron Density of the Complex Carbides Sc3[Fe(C2)2] and Sc 3 [Co(C 2 ) 2 ]. -The nature of chemical bonding in the title compounds is characterized by powder XRD and scalar-relativistic electronic structure calculations using the augmented spherical wave method. The compounds crystallize in the orthorhombic space group Immm with Z = 2. The structures contain one-dimensional infinite MC4 (M: Fe, Co) ribbons embedded in a Sc matrix. Besides substantial covalent M-C bonding within the MC 4 ribbons, there exist also discrete Sr-C bonds of noticeable covalent character. The increase of the Fermi level in the Co(d 9 ) carbide relative to its isotypic Fe (d 8 ) species is reflected in the charge density picture by a significant change in the polarization pattern displayed by valence shell charge concentrations of the transition metal centers in the MC4 units. -(ROHRMOSER, B.; EICKERLING, G.; PRESNITZ, M.; SCHERER*, W.; EYERT, V.; HOFFMANN, R.-D.; RODEWALD, U. C.; VOGT, C.; POETTGEN, R.; J. Am. Chem. Soc. 129 (2007) 30, 9356-9365; Inst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.