Computational approaches to the analysis of collective behavior in social insects increasingly rely on motion paths as an intermediate data layer from which one can infer individual behaviors or social interactions. Honey bees are a popular model for learning and memory. Previous experience has been shown to affect and modulate future social interactions. So far, no lifetime history observations have been reported for all bees of a colony. In a previous work we introduced a recording setup customized to track up to 4,000 marked bees over several weeks. Due to detection and decoding errors of the bee markers, linking the correct correspondences through time is non-trivial. In this contribution we present an in-depth description of the underlying multi-step algorithm which produces motion paths, and also improves the marker decoding accuracy significantly. The proposed solution employs two classifiers to predict the correspondence of two consecutive detections in the first step, and two tracklets in the second. We automatically tracked ∼2,000 marked honey bees over 10 weeks with inexpensive recording hardware using markers without any error correction bits. We found that the proposed two-step tracking reduced incorrect ID decodings from initially ∼13% to around 2% post-tracking. Alongside this paper, we publish the first trajectory dataset for all bees in a colony, extracted from ∼3 million images covering 3 days. We invite researchers to join the collective scientific effort to investigate this intriguing animal system. All components of our system are open-source.
Württemberg engagiert sich bei NFDI4Memory gemeinsam mit anderen Partnern für den Ausbau der Forschungsinfrastruktur für historische Daten. https://4memory.de/ Zur Software Transkribus. https://transkribus.eu/ Das FDMLab berichtet regelmäßig auf seinem Blog über den Einsatz von KI-Werkzeugen im Archiv. https://fdmlab. landesarchiv-bw.de
Zusammenfassung Das FDMLab des Landesarchivs Baden-Württemberg evaluiert geeignete Werkzeuge und Methoden aus dem Data Science- und KI-Bereich, passt diese für den Einsatz im Archiv an und führt erste Praxistests durch. Ziel ist es, Archivgut noch besser auffindbar und nachnutzbar zu machen und insbesondere die Bedarfe der digital forschenden, historisch orientierten Geisteswissenschaften zu berücksichtigen. Auch archivinterne Arbeitsprozesse der Erschließung sollen technisch besser unterstützt werden. Der Beitrag vermittelt einen Überblick über die bisherigen Projekte des FDMLabs in den Bereichen automatische Volltexterkennung, Werkzeuge zur Datenanalyse und -anreicherung sowie Interoperabilität und Schnittstellen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.