Lipid interactions modulate the function, folding, structure, and organization of membrane proteins. Hydrogen/ deuterium exchange mass spectrometry (HDX-MS) has emerged as a useful tool to understand the structural dynamics of these proteins within lipid environments. Lipids, however, have proven problematic for HDX-MS analysis of membrane-embedded proteins due to their presence of impairing proteolytic digestion, causing liquid chromatography column fouling, ion suppression, and/or mass spectral overlap. Herein, we describe the integration of a chromatographic phospholipid trap column into the HDX-MS apparatus to enable online sample delipidation prior to protease digestion of deuterium-labeled protein−lipid assemblies. We demonstrate the utility of this method on membrane scaffold protein−lipid nanodisc�both empty and loaded with the ∼115 kDa transmembrane protein AcrB�proving efficient and automated phospholipid capture with minimal D-to-H back-exchange, peptide carry-over, and protein loss. Our results provide insights into the efficiency of phospholipid capture by ZrO 2 -coated and TiO 2 beads and describe how solution conditions can be optimized to maximize not only the performance of our online but also the existing offline, delipidation workflows for HDX-MS. We envision that this HDX-MS method will significantly ease membrane protein analysis, allowing to better interrogate their dynamics in artificial lipid bilayers or even native cell membranes.
Lipid interactions modulate the function, folding, structure, and organization of membrane proteins. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has emerged as a useful tool to understand the structural dynamics of these proteins within lipid environments. Lipids, however, have proven problematic for HDX-MS analysis of membrane-embedded proteins, due to their presence impairing proteolytic digestion, causing liquid chromatography column fouling, ion suppression, and/or mass spectral overlap. Here, we describe the integration of a chromatographic phospholipid trap column into the HDX-MS apparatus to enable online sample delipidation prior to protease digestion of deuterium labeled protein-lipid assemblies. We demonstrate the utility of this method on membrane scaffold protein lipid nanodisc – both empty and loaded with the ~115 kDa transmembrane protein AcrB – proving efficient and automated phospholipid capture with minimal D-to-H back-exchange, peptide carry-over, and with minimal protein loss. Our results provide insights into the efficiency of phospholipid capture by ZrO2-coated and TiO2 beads, and describe how solution conditions can be optimized to maximize the performance of our online, but also the existing offline, delipidation workflows for HDX-MS. We envision that this HDX-MS method will significantly ease membrane protein analysis, allowing to better interrogate their dynamics in artificial lipid bilayers or even cell membranes.
Membrane efflux pumps play a major role in bacterial multidrug resistance. The tripartite multidrug efflux pump system from Escherichia coli, AcrAB-TolC, is a target for inhibition to lessen resistance development and restore antibiotic efficacy, with homologs in other ESKAPE pathogens. Here, we rationalize a mechanism of inhibition against the periplasmic adaptor protein, AcrA, using a combination of hydrogen/deuterium exchange mass spectrometry, cellular efflux assays, and molecular dynamics simulations. We define the structural dynamics of AcrA and find that an inhibitor can inflict long-range stabilisation across all four of its domains, whereas an interacting efflux substrate has minimal effect. Our results support a model where an inhibitor forms a molecular wedge within a cleft between the lipoyl and αβ barrel domains of AcrA, diminishing its conformational transmission of drug-evoked signals from AcrB to TolC. This work provides molecular insights into multidrug adaptor protein function which could be valuable for developing antimicrobial therapeutics.
Multidrug efflux pumps are ubiquitous across both eukaryotes and prokaryotes, and have major implications in antimicrobial and multidrug resistance. They reside within cellular membranes and have proven difficult to study owing to their hydrophobic character and relationship with their compositionally complex lipid environment. Advances in structural mass spectrometry (MS) techniques have made it possible to study these systems to elucidate critical information on their structure–function relationships. For example, MS techniques can report on protein structural dynamics, stoichiometry, connectivity, solvent accessibility, and binding interactions with ligands, lipids, and other proteins. This information proving powerful when used in conjunction with complementary structural biology methods and molecular dynamics (MD) simulations. In the present review, aimed at those not experts in MS techniques, we report on the current uses of MS in studying multidrug efflux systems, practical considerations to consider, and the future direction of the field. In the first section, we highlight the importance of studying multidrug efflux proteins, and introduce a range of different MS techniques and explain what information they yield. In the second section, we review recent studies that have utilised MS techniques to study and characterise a range of different multidrug efflux systems.
Membrane efflux pumps play a major role in bacterial multidrug resistance. The tripartite multidrug efflux pump system from Escherichia coli, AcrAB-TolC, is a target for inhibition to lessen resistance development and restore antibiotic efficacy, with homologs in other ESKAPE pathogens. Here, we rationalize a mechanism of inhibition against the periplasmic adaptor protein, AcrA, using a combination of hydrogen/deuterium exchange mass spectrometry, cellular efflux assays, and molecular dynamics simulations. We define the structural dynamics of AcrA and find that an inhibitor can inflict long-range stabilisation across all four of its domains, whereas an interacting efflux substrate has minimal effect. Our results support a model where an inhibitor forms a molecular wedge within a cleft between the lipoyl and αβ domains of AcrA, diminishing its conformational transmission of drug-evoked signals from AcrB to TolC. This work provides molecular insights into multidrug adaptor protein function which could be valuable for developing antimicrobial therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.