Gene-corrected patient-specific induced pluripotent stem (iPS) cells offer a unique approach to gene therapy. Here, we begin to assess whether the mutational load acquired during gene correction of iPS cells is compatible with use in the treatment of genetic causes of retinal degenerative disease. We isolated iPS cells free of transgene sequences from a patient with gyrate atrophy caused by a point mutation in the gene encoding ornithine-δ-aminotransferase (
OAT
) and used homologous recombination to correct the genetic defect. Cytogenetic analysis, array comparative genomic hybridization (aCGH), and exome sequencing were performed to assess the genomic integrity of an iPS cell line after three sequential clonal events: initial reprogramming, gene targeting, and subsequent removal of a selection cassette. No abnormalities were detected after standard G-band metaphase analysis. However, aCGH and exome sequencing identified two deletions, one amplification, and nine mutations in protein coding regions in the initial iPS cell clone. Except for the targeted correction of the single nucleotide in the
OAT
locus and a single synonymous base-pair change, no additional mutations or copy number variation were identified in iPS cells after the two subsequent clonal events. These findings confirm that iPS cells themselves may carry a significant mutational load at initial isolation, but that the clonal events and prolonged cultured required for correction of a genetic defect can be accomplished without a substantial increase in mutational burden.
Remarkable interest in the epigenetic status of human induced pluripotent stem (iPS) cells inspired numerous studies of their X-inactivation patterns. However, both the presence and the absence of X-inactivation have been described to date in undifferentiated iPS cells. The reasons for the discordant results between different studies are unclear, and further X-inactivation testing is warranted for all female human iPS cell lines. Some of the inconsistency in the current data most likely results from the use of different X-inactivation assays by different authors. We provide a detailed protocol for a simple, reliable and affordable X-inactivation assay based on promoter methylation and CAG-repeat polymorphism in the human androgen receptor (AR) gene at Xq11.2. This assay is commonly used in clinical genetic laboratories and we propose that it could be ideal for routine assessment and monitoring of the X-inactivation status in female human iPS cell lines.
Array-based comparative genomic hybridization is rapidly becoming a standard assay for research and clinical cytogenetics laboratories. Certain automated workflows are used to achieve economies in running this relatively expensive assay. Here, we describe the ways in which our medium throughput laboratory has investigated automation at various points in our workflow to achieve economies and improve the resulting data for our investigators. We investigate an automated hybridization station to improve microarray hybridization, an autoloading scanner to facilitate the rapid scanning of multiple arrays, and a software package that allows for quick and easy access to many external resources to extend the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.