Osteoporosis is the consequence of altered bone metabolism resulting in the systemic reduction of bone strength and increased risk of fragility fractures. MicroRNAs (miRNAs) regulate gene expression on a post-transcriptional level and are known to take part in the control of bone formation and bone resorption. In addition, it is known that miRNAs are secreted by many cell types and can transfer "messages" to recipient cells. Thus, circulating miRNAs might not only be useful as surrogate biomarkers for the diagnosis or prognosis of pathological conditions, but could be actively modulating tissue physiology. Therefore, the aim of this study was to test whether circulating miRNAs that exhibit changes in recent osteoporotic fracture patients could be causally related to bone metabolism. In the first step we performed an explorative analysis of 175 miRNAs in serum samples obtained from 7 female patients with recent osteoporotic fractures at the femoral neck, and 7 age-matched female controls. Unsupervised cluster analysis revealed a high discriminatory power of the top 10 circulating miRNAs for patients with recent osteoporotic fractures. In total 6 miRNAs, miR-10a-5p, miR-10b-5p, miR-133b, miR-22-3p, miR-328-3p, and let-7g-5p exhibited significantly different serum levels in response to fracture (adjusted p-value<0.05). These miRNAs were subsequently analyzed in a validation cohort of 23 patients (11 control, 12 fracture), which confirmed significant regulation for miR-22-3p, miR-328-3p, and let-7g-5p. A set of these and of other miRNAs known to change in the context of osteoporotic fractures were subsequently tested for their effects on osteogenic differentiation of human mesenchymal stem cells (MSCs) in vitro. The results show that 5 out of 7 tested miRNAs can modulate osteogenic differentiation of MSCs in vitro. Overall, these data suggest that levels of specific circulating miRNAs change in the context of recent osteoporotic fractures and that such perturbations of "normal" levels might affect bone metabolism or bone healing processes.
Aging results in a decline of physiological functions and in reduced repair capacities, in part due to impaired regenerative power of stem cells, influenced by the systemic environment. In particular osteogenic differentiation capacity (ODC) of mesenchymal stem cells (MSCs) has been shown to decrease with age, thereby contributing to reduced bone formation and an increased fracture risk.Searching for systemic factors that might contribute to this age related decline of regenerative capacity led us to investigate plasma-derived extracellular vesicles (EVs). EVs of the elderly were found to inhibit osteogenesis compared to those of young individuals. By analyzing the differences in the vesicular content Galectin-3 was shown to be reduced in elderly-derived vesicles. While overexpression of Galectin-3 resulted in an enhanced ODC of MSCs, siRNA against Galectin-3 reduced osteogenesis. Modulation of intravesicular Galectin-3 levels correlated with an altered osteo-inductive potential indicating that vesicular Galectin-3 contributes to the biological response of MSCs to EVs. By site-directed mutagenesis we identified a phosphorylation-site on Galectin-3 mediating this effect. Finally, we showed that cell penetrating peptides comprising this phosphorylation-site are sufficient to increase ODC in MSCs. Therefore, we suggest that decrease of Galectin-3 in the plasma of elderly contributes to the age-related loss of ODC.
T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CART cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ONswitch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.