Powder bed fusion (PBF) is an additive manufacturing (AM) technique which offers efficient part-production, light-weighting, and the ability to create complex geometries. However, during a build cycle, multiple aging and degradation processes occur which may affect the reusability of the Polyamide 12 (PA-12) powder. Limited understanding of these phenomena can result in discarding re-usable powder unnecessarily, or the production of parts with insufficient properties, both of which lead to significant amounts of waste. This paper examines the thermal, chemical, and mechanical characteristics of PA-12 via an oven storage experiment that simulates multi jet fusion (MJF) conditions. Changes in the properties of PA-12 powder during oven storage showed two separate, time-dependent trends. Initially, differential scanning calorimetry showed a 4.2 °C increase in melting temperature (Tm) and a rise in crystallinity (Xc). This suggests that secondary crystallisation is occurring instead of, or in addition to, the more commonly reported further polycondensation process. However, with extended storage time, there were substantial reductions in Tm and Xc, whilst an 11.6 °C decrease in crystallisation temperature was observed. Fourier transform infrared spectroscopy, a technique rarely used in PBF literature, shows an increased presence of imide bonds—a key marker of thermo-oxidative degradation. Discolouration of samples, an 81% reduction in strength and severe material embrittlement provided further evidence that thermo-oxidative degradation becomes the dominant process following extended storage times beyond 100 h. An additional pre-drying experiment showed how moisture present within PA-12 can also accelerate degradation via hydrolysis.
Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although mutations in TARDBP , encoding transactive response DNA-binding protein 43 kDa (TDP-43), account for less than 1% of all ALS cases, TDP-43–positive aggregates are present in nearly all ALS patients, including patients with sporadic ALS (sALS) or carrying other familial ALS–causing (fALS-causing) mutations. Interestingly, TDP-43 inclusions are also present in subsets of patients with frontotemporal dementia, Alzheimer’s disease, and Parkinson’s disease; therefore, methods of activating intracellular protein quality control machinery capable of clearing toxic cytoplasmic TDP-43 species may alleviate disease-related phenotypes. Here, we identify a function of nemo-like kinase (Nlk) as a negative regulator of lysosome biogenesis. Genetic or pharmacological reduction of Nlk increased lysosome formation and improved clearance of aggregated TDP-43. Furthermore, Nlk reduction ameliorated pathological, behavioral, and life span deficits in 2 distinct mouse models of TDP-43 proteinopathy. Because many toxic proteins can be cleared through the autophagy/lysosome pathway, targeted reduction of Nlk represents a potential approach to therapy development for multiple neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.