This paper describes a tool suite for the ACL2 programming language which incorporates certain ideas from the Hindley-Milner paradigm of functional programming (as exemplified in popular languages like ML and Haskell), including a "typed" style of programming with the ability to define polymorphic types. These ideas are introduced via macros into the language of ACL2, taking advantage of ACL2's guard-checking mechanism to perform type checking on both function definitions and theorems. Finally, we discuss how these macros were used to implement features of Specware [1], a software specification and implementation system.
Proving the correctness of programs written for multiple processors is a challenging problem, due in no small part to the weaker memory guarantees afforded by most modern architectures. In particular, the existence of store buffers means that the programmer can no longer assume that writes to different locations become visible to all processors in the same order. However, all practical architectures do provide a collection of weaker guarantees about memory consistency across processors, which enable the programmer to write provably correct programs in spite of a lack of full sequential consistency. In this work, we present a mechanization in the ACL2 theorem prover of an axiomatic weak memory model (introduced by Alglave et al. [2]). In the process, we provide a new proof of an established theorem involving these axioms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.