Patients with ocular melanoma have been treated since June 1991 at the medical cyclotron of the Centre Antoine Lacassagne (CAL). Positions and sizes of the ocular nozzle elements were initially defined based on experimental work, taking as a pattern functional existing facilities. Nowadays Monte Carlo (MC) calculation offers a tool to refine this geometry by adjusting size and place of beam modeling devices. Moreover, the MC tool is a useful way to calculate the dose and to evaluate the impact of secondary particles in the field of radiotherapy or radiation protection. Both LINAC and cyclotron producing x rays, electrons, protons, and neutrons are available in CAL, which suggests choosing MCNPX for its particle versatility. As a first step, the existing installation was input in MCNPX to check its aptitude to reproduce experimentally measured depth-dose profile, lateral profile, output-factor (OF), and absolute dose. The geometry was defined precisely and described from the last achromatic bending magnet of our proton beam line to the position of treated eyes. Relative comparisons of percentage depth-dose and lateral profiles, performed between measured data and simulations, show an agreement of the order of 2% in dose and 0.1 mm in range accuracy. These comparisons, carried out with and without beam-modifying device, yield results compatible to the required precision in ocular melanoma treatments, as long as adequate choices are made on MCNPX input decks for physics card. Absolute dose and OF issued from calculations and measurements were also compared. Results obtained for these two kinds of data, carried out in the simplified situation of an unmodulated beam, indicate that MC calculation could effectively complement measurements. These encouraging results are a large source of motivation to promote further studies, first in a new design of the ocular nozzle, and second in the analysis of the influence of beam-modifying devices attached to the final patient collimator, such as wedge or compensators, on dose values.
Purpose [18F]-2-Fluoro-2-deoxy-D-glucose PET/CT (FDG PET/CT) is a sensitive and quantitative technic for detecting inflammatory process. Glucose uptake is correlated with an increased anaerobic glycolysis seen in activated inflammatory cells such as monocytes, lymphocytes, and granulocytes. The aim of the study was to assess the inflammatory status at the presumed peak of the inflammatory phase in non-critically ill patients requiring admission for COVID-19. Methods Patients admitted with COVID-19 were prospectively enrolled. FDG PET/CT was performed from day 6 to day 14 of the onset of symptoms. Depending on FDG PET/CT findings, patients' profiles were classified as "inflammatory" or "low inflammatory." FDG PET/CT data were compared with chest CT evolution and short-term clinical outcome. All inflammatory sites were reported to screen potential extra-pulmonary tropism. Results Thirteen patients were included. Maximum standardized uptake values ranged from 4.7 to 16.3 in lungs. All patients demonstrated increased mediastinal lymph nodes glucose uptake. Three patients (23%) presented mild nasopharyngeal, two patients (15%) bone marrow, and five patients (38%) splenic mild increase in glucose uptake. No patient had significant digestive focal or segmental glucose uptake. There was no significant physiological myocardial glucose uptake in all patients except one. There was no correlation between PET lung inflammatory status and chest CT evolution or short-term clinical outcome. Conclusion Inflammatory process at the presumed peak of the inflammatory phase in COVID-19 patients is obvious in FDG PET/CT scans. Glucose uptake is heterogeneous and typically focused on lungs. Trial registration NCT04441489. Registered 22 June 2020 (retrospectively registered).
The aim of this work was to study the dosimetric potential of the Monte Carlo code MCNPX applied to the protontherapy field. For series of clinical configurations a comparison between simulated and experimental data was carried out, using the proton beam line of the MEDICYC isochronous cyclotron installed in the Centre Antoine Lacassagne in Nice. The dosimetric quantities tested were depth-dose distributions, output factors, and monitor units. For each parameter, the simulation reproduced accurately the experiment, which attests the quality of the choices made both in the geometrical description and in the physics parameters for beam definition. These encouraging results enable us today to consider a simplification of quality control measurements in the future. Monitor Units calculation is planned to be carried out with preestablished Monte Carlo simulation data. The measurement, which was until now our main patient dose calibration system, will be progressively replaced by computation based on the MCNPX code. This determination of Monitor Units will be controlled by an independent semi-empirical calculation.
Objectives Since the beginning of the COVID-19 pandemic, the Spanish Society of Neurology has run a registry of patients with neurological involvement for the purpose of informing clinical neurologists. Encephalopathy and encephalitis were among the most frequently reported complications. In this study, we analyse the characteristics of these complications. Patients and methods We conducted a retrospective, descriptive, observational, multicentre study of patients with symptoms compatible with encephalitis or encephalopathy, entered in the Spanish Society of Neurology's COVID-19 Registry from 17 March to 6 June 2020. Results A total of 232 patients with neurological symptoms were registered, including 51 cases of encephalopathy or encephalitis (21.9%). None of these patients were healthcare professionals. The most frequent syndromes were mild or moderate confusion (33%) and severe encephalopathy or coma (9.8%). The mean time between onset of infection and onset of neurological symptoms was 8.02 days. Lumbar puncture was performed in 60.8% of patients, with positive PCR results for SARS-CoV-2 in only one case. Brain MRI studies were performed in 47% of patients, with alterations detected in 7.8% of these. EEG studies were performed in 41.3% of cases, detecting alterations in 61.9%. Conclusions Encephalopathy and encephalitis are among the complications most frequently reported in the registry. More than one-third of patients presented mild or moderate confusional syndrome. The mean time from onset of infection to onset of neurological symptoms was 8 days (up to 24 hours earlier in women than in men). EEG was the most sensitive test in these patients, with very few cases presenting alterations in neuroimaging studies. All patients treated with boluses of corticosteroids or immunoglobulins progressed favourably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.