We report on a Kepler spacecraft survey during the K2 mission to characterize the rotational properties of 56 Trojan asteroids in the L4 cloud. More than one rotational period was observed for 51 of these targets, allowing for well constrained lightcurve rotation periods and amplitudes, five of which are found to be in conflict with previously published values. We find ∼10% of objects have rotational periods longer than 100 hr, an excess of slow rotators 10 times larger than suggested from the literature. Investigation of the rotational frequencies of our Kepler sample when combined with high-quality lightcurves in the literature reveals the distribution of rotational frequencies is non-Maxwellian even when consideration is given to size-dependent variations in rotational rate. From investigation of lightcurve shapes and amplitudes, we estimate the binary fraction within the Trojan population to be ∼6%–36% depending on the methodology utilized to identify binary candidates.
Main belt asteroid (6478) Gault has been dynamically linked with two overlapping asteroid families: Phocaea, dominated by S-type asteroids, and Tamara, dominated by low-albedo C-types. This object has recently become an interesting case for study after images obtained in late 2018 revealed that it was active and displaying a comet-like tail. Previous authors have proposed that the most likely scenarios to explain the observed activity on Gault were rotational excitation or merger of near-contact binaries. Here we use new photometric and spectroscopic data of Gault to determine its physical and compositional properties. Lightcurves derived from the photometric data showed little variation over three nights of observations, which prevented us from determining the rotation period of the asteroid. Using WISE observations of Gault and the near-Earth Asteroid Thermal Model (NEATM) we determined that this asteroid has a diameter <6 km. Near-infrared spectroscopic data obtained with the Infrared Telescope Facility showed a spectrum similar to that of S-complex asteroids, and a surface composition consistent with H chondrite meteorites. These results favor a compositional affinity between Gault and asteroid (25) Phocaea, and rules out a compositional link with the Tamara family. From the spectroscopic data we found no evidence of fresh material that could have been exposed during the outburst episodes.
The composition of comets in the Solar System come in multiple groups thought to encode information about their formation in different regions of the outer protosolar disk. The recent discovery of the second interstellar object, 2I/Borisov, allows for spectroscopic investigations into its gas content and a preliminary classification of it within the Solar System comet taxonomies to test the applicability of planetesimal formation models to other stellar systems. We present spectroscopic and imaging observations from 2019 September 20th through October 26th from the Bok, MMT, and LBT telescopes. We identify CN in the comet's spectrum and set precise upper limits on the abundance of C2 on all dates. We use a Haser model to convert our integrated fluxes to production rates and find Q(CN) = 5.0 +/-2.0 * 10^24 mol/s on September 20 th and Q(CN) = (1.1 -1.9) * 10^24 mols/s on later dates, both consistent with contemporaneous observations. We set our lowest upper limit on a C2 production rate, Q(C2) < 1.6 10^23 mols/s on October 10th. The measured ratio upper limit for that date Q(C2)/Q(CN) < 0.095 indicates that 2I/Borisov is strongly in the (carbon chain) 'depleted' taxonomic group. The only comparable Solar System comets have detected ratios near this limit, making 2I/Borisov statistically likely to be more depleted than any known comet. Most 'depleted' comets are Jupiter Family Comets, perhaps indicating a similarity in formation conditions between the most depleted of the JFCs and 2I/Borisov. More work is needed to understand the applicability of our knowledge of Solar System comet taxonomies onto interstellar objects and we discuss future work that could help to clarify the usefulness of the approach.
We investigate the recent and future orbital evolution of the solar system small body 2019 LD2 (hereafter “LD2”), which was recently found to show cometary activity. While LD2's orbit initially looks similar to that of a Jupiter Trojan, numerical integrations show that it is only co-orbital with Jupiter for approximately a single orbit around the Sun. This would classify LD2 as an active Centaur, but we stress this object remains unique; within the next ∼40–50 years LD2 is likely to become a Jupiter Family Comet, offering an opportunity to observe this critical transition.
We report near-infrared (0.7-2.5 µm) reflectance spectra for each of the six target asteroids of the forthcoming NASA Discovery-class mission, Lucy. Five Jupiter Trojans (the binary (617) Patroclus system, (3548) Eurybates, (21900) Orus, (11351) Leucus, and (15094) Polymele) are well-characterized, with measurable spectral differences. We also report a survey-quality spectrum for main belt asteroid (52246) Donaldjohanson. We measured a continuum of spectral slopes including "red" (Orus, Leucus), "less red" (Eurybates, Patroclus-Menoetius) and intermediate (Polymele), indicating a range of compositional end-members or geological histories. We perform radiative transfer modeling of several possible surface compositions. We find that the mild-sloped spectra and low albedo of Patroclus and Eurybates imply similar compositions. Eurybates (~7 wt.% water ice) and Patroclus (~4 wt.% water ice) are consistent with a hydrated surface. Models for Orus and Leucus are consistent with each other and require a significantly more reddening agent (e.g. iron-rich silicates or tholin-like organics). Polymele has a linear spectrum like Patroclus, but a higher albedo more closely aligned with Orus/Leucus, defying simple grouping. Solar system formation models generally predict that the Jovian Trojans accreted in the outer solar system. Our observations and analysis are generally consistent with this expectation, although not uniquely so.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.