The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs.
bThere are nearly 50 forkhead (FOX) transcription factors encoded in the human genome and, due to sharing a common DNA binding domain, they are all thought to bind to similar DNA sequences. It is therefore unclear how these transcription factors are targeted to specific chromatin regions to elicit specific biological effects. Here, we used chromatin immunoprecipitation followed by sequencing (ChIP-seq) to investigate the genome-wide chromatin binding mechanisms used by the forkhead transcription factor FOXM1. In keeping with its previous association with cell cycle control, we demonstrate that FOXM1 binds and regulates a group of genes which are mainly involved in controlling late cell cycle events in the G 2 and M phases. However, rather than being recruited through canonical RYAAAYA forkhead binding motifs, FOXM1 binding is directed via CHR (cell cycle genes homology region) elements. FOXM1 binds these elements through protein-protein interactions with the MMB transcriptional activator complex. Thus, we have uncovered a novel and unexpected mode of chromatin binding of a FOX transcription factor that allows it to specifically control cell cycle-dependent gene expression. There are nearly 50 different forkhead transcription factors encoded in mammalian genomes, and these proteins all contain the conserved forkhead DNA binding domain (reviewed in references 1 and 2). Forkhead transcription factors are involved in controlling a wide range of biological processes and are aberrantly expressed or regulated in disease states, including cancer (reviewed in reference 2). However, due to sharing a common DNA binding domain, forkhead transcription factors are generally believed to bind to variations of the RYAAAYA motif. Hence, it is unclear how individual forkhead proteins are specifically recruited to the regulatory regions of different cohorts of target genes to control defined biological responses. One key process which is controlled by forkhead transcription factors is the cell cycle and, in particular, the G 2 -M transition. The initial links to G 2 -M control were made with the Saccharomyces cerevisiae forkhead protein Fkh2, which controls the temporal expression of a cluster of genes at this phase of the cell cycle (reviewed in reference 3). More recently, members of the FOXO and FOXM classes of forkhead transcription factors have been linked with controlling the same process in mammalian cells (4-6). In both cases, forkhead transcription factors coordinate the integration of signals from the cell cycle regulatory machinery to transcriptional outputs. This is exemplified by the links to the cell cycle regulated Polo-like kinase PLK1, which is recruited to cell cycle-regulated promoters through promoter elements bound by the forkhead transcription factors FOXM1 and Fkh2, albeit indirectly in the case of Fkh2 (7,8).In mammalian cells, the transcriptional control of a cluster of genes at the G 2 -M transition, is coordinated through promoter elements which typically contain CHR (cell cycle genes homology region) and...
Focal adhesions (FAs) are macromolecular complexes that regulate cell adhesion and mechanotransduction. By performing fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photoactivation (FLAP) experiments, we found that the mobility of core FA proteins correlates with their function. Structural proteins such as tensin, talin and vinculin are significantly less mobile in FAs than signaling proteins such as FAK (also known as PTK2) and paxillin. The mobilities of the structural proteins are directly influenced by substrate stiffness, suggesting that they are involved in sensing the rigidity of the extracellular environment. The turnover rates of FAK and paxillin, as well as kindlin2 (also known as FERMT2), are not influenced by substrate stiffness. By using specific Src and FAK inhibitors, we reveal that force-sensing by vinculin occurs independently of FAK and paxillin phosphorylation. However, their phosphorylation is required for downstream Rac1-driven cellular processes, such as protrusion and cell migration. Overall, we show that the FA is composed of different functional modules that separately control mechanosensing and the cellular mechano-response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.