Aerosols significantly influence atmospheric processes such as cloud nucleation, heterogeneous chemistry, and heavy-metal transport in the troposphere. The chemical and physical complexity of atmospheric aerosols results in large uncertainties in their climate and health effects. In this article, we review recent advances in scientific understanding of aerosol processes achieved by the application of quantum chemical calculations. In particular, we emphasize recent work in two areas: new particle formation and heterogeneous processes. Details in quantum chemical methods are provided, elaborating on computational models for prenucleation, secondary organic aerosol formation, and aerosol interface phenomena. Modeling of relative humidity effects, aerosol surfaces, and chemical kinetics of reaction pathways is discussed. Because of their relevance, quantum chemical calculations and field and laboratory experiments are compared. In addition to describing the atmospheric relevance of the computational models, this article also presents future challenges in quantum chemical calculations applied to aerosols.
The role of atmospheric aerosols on climate change is one of the biggest uncertainties in most global climate models. Organic aerosols have been identified as potential cloud condensation nuclei (CCN), and amino acids are organic molecules that could serve as CCN. Amino acids make up a significant portion of the total organic material in the atmosphere, and herein we present a systematic study of hydration for two of the most common atmospheric amino acids, glycine and serine. We compute DLPNO/CCSD(T)//M08-HX/ MG3S thermodynamic properties and atmospheric concentrations of Gly(H 2 O) n and Ser(H 2 O) n , where n = 1−5. We predict that serine−water clusters have higher concentrations at n = 1 and 5, while glycine−water clusters have higher concentrations at n = 2−4. However, both glycine and serine are inferred to exist primarily in their nonhydrated monomer forms in the absence of other species such as sulfuric acid.
The emergence of life on the prebiotic Earth must have involved the formation of polypeptides, yet the polymerization of amino acids is thermodynamically unfavorable under biologically relevant aqueous conditions because amino acids are zwitterions in solution and because of the production of a water molecule through a condensation reaction. Many mechanisms for overcoming this thermodynamic unfavorability have been proposed, but the role of gas phase water clusters has not been investigated. We present the thermodynamics of the water-mediated gas phase dimerization reaction of glycine as a model for the atmospheric polymerization of amino acids prior to the emergence of biological machinery. We hypothesize that atmospheric aerosols may have played a major role in the prebiotic formation of peptide bonds by providing the thermodynamic driving force to facilitate increasingly stable linear oligopeptides. In addition, we hypothesize that small aerosols orient amino acids on their surfaces, thus providing the correct molecular orientations to funnel the reaction pathways of peptides through transition states that lead eventually to polypeptide products. Using density functional theory and a thorough configurational sampling technique, we show that the thermodynamic spontaneity of the linear dimerization of glycine in the gas phase can be driven by the addition of individual water molecules.
The computational study of the formation and growth of atmospheric aerosols requires an accurate Gibbs free energy surface, which can be obtained from gas phase electronic structure and vibrational frequency calculations. These quantities are valid for those atmospheric clusters whose geometries correspond to a minimum on their potential energy surfaces. The Gibbs free energy of the minimum energy structure can be used to predict atmospheric concentrations of the cluster under a variety of conditions such as temperature and pressure. We present a computationally inexpensive procedure built on a genetic algorithm-based configurational sampling followed by a series of increasingly accurate screening calculations. The procedure starts by generating and evolving the geometries of a large set of configurations using semi-empirical models then refines the resulting unique structures at a series of high-level ab initio levels of theory. Finally, thermodynamic corrections are computed for the resulting set of minimum-energy structures and used to compute the Gibbs free energies of formation, equilibrium constants, and atmospheric concentrations. We present the application of this procedure to the study of hydrated glycine clusters under ambient conditions. Video Link The video component of this article can be found at https://www.jove.com/video/60964/ 16. This process is called configurational sampling and can be achieved through a variety of techniques, including those based on molecular dynamics (MD) 17,18,19,20 , Monte Carlo (MC) 21,22 , and genetic algorithms (GA) 23,24,25 .
The computational study of the formation and growth of atmospheric aerosols requires an accurate Gibbs free energy surface, which can be obtained from gas phase electronic structure and vibrational frequency calculations. These quantities are valid for those atmospheric clusters whose geometries correspond to a minimum on their potential energy surfaces. The Gibbs free energy of the minimum energy structure can be used to predict atmospheric concentrations of the cluster under a variety of conditions such as temperature and pressure. We present a computationally inexpensive procedure built on a genetic algorithm-based configurational sampling followed by a series of increasingly accurate screening calculations. The procedure starts by generating and evolving the geometries of a large set of configurations using semi-empirical models then refines the resulting unique structures at a series of high-level ab initio levels of theory. Finally, thermodynamic corrections are computed for the resulting set of minimum-energy structures and used to compute the Gibbs free energies of formation, equilibrium constants, and atmospheric concentrations. We present the application of this procedure to the study of hydrated glycine clusters under ambient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.