Thioesterases are enzymes that hydrolyze thioester bonds in numerous biochemical pathways, for example in fatty acid synthesis. This work reports known functions, structures, and mechanisms of updated thioesterase enzyme families, which are classified into 35 families based on sequence similarity.Each thioesterase family is based on at least one experimentally characterized enzyme, and most families have enzymes that have been crystallized and their tertiary structure resolved. Classifying thioesterases into families allows to predict tertiary structures and infer catalytic residues and mechanisms of all sequences in a family, which is particularly useful because the majority of known protein sequence have no experimental characterization. Phylogenetic analysis of experimentally characterized thioesterases that have structures with the two main structural folds reveal convergent and divergent evolution. Based on tertiary structure superimposition, catalytic residues are predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.