Summary1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests.
Summary1. Dynamic Energy Budget (DEB) theory was designed to understand the dynamics of biological systems from cells to populations and ecosystems via a mass balance approach of individuals. However, most work so far has focused on the level of the individual. To encourage further use of DEB theory in a population context, we developed DEB-IBM, a generic individual-based model (IBM) that is based on DEB theory. 2. The generic IBM is implemented as a computer program using NetLogo, a free software platform that is accessible to biologists with little programming background. The IBM uses DEB to represent assimilation, maintenance, growth and reproduction of individuals. The model description follows the overview, design and details (ODD) protocol, a generic format for describing IBMs, and thereby provides a novel and accessible introduction to DEB theory and how it works in a population context. 3. Dynamic Energy Budget-individual-based model can be used to explore properties of both individual life-history traits and population dynamics, which emerge from the set of DEB parameters of a species, and their interaction with environmental variables such as food density. Furthermore, DEB-IBM can be adapted to address specific research questions, for example by including spatial effects. A user manual explains how this can be done. 4. Dynamic Energy Budget-individual-based model is designed to both facilitate use and testing DEB theory in a population context and to advance individual-based modelling by basing the representation of individuals on well-tested physiological principles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.