Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing A. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD.
Summary
Neural circuit wiring relies on selective synapse formation whereby a presynaptic release apparatus is matched with its cognate postsynaptic machinery. At metabotropic synapses, the molecular mechanisms underlying this process are poorly understood. In the mammalian retina, rod photoreceptors form selective contacts with rod ON-bipolar cells by aligning the presynaptic voltage-gated Ca2+ channel directing glutamate release (CaV1.4) with postsynaptic mGluR6 receptors. We show this coordination requires an extracellular protein, α2δ4, which complexes with CaV1.4 and the rod synaptogenic mediator, ELFN1, for trans-synaptic alignment with mGluR6. Eliminating α2δ4 in mice abolishes rod synaptogenesis, synaptic transmission to rod ON-bipolar cells, and disrupts postsynaptic mGluR6 clustering. We further find that in rods α2δ4 is crucial for organizing synaptic ribbons and setting CaV1.4 voltage sensitivity. In cones, α2δ4 is essential for CaV1.4 function, but is not required for ribbon organization, synaptogenesis, or synaptic transmission. These findings offer insights into retinal pathologies associated with α2δ4 dysfunction.
Center (to the Baldwin lab). J. M. G. serves as a consultant to BioMarin Pharmaceutical for the development of histone deacetylase inhibitors as therapeutics and is an inventor on patents licensed by The Scripps Research Institute to BioMarin Pharmaceutical. E. S. is supported in part by BioMarin Pharmaceuticals. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This article contains Figs. S1-S3 and File S1-S2. The data discussed in this paper have been deposited to the Sequence Read Archive (SRA) under accession no. PRJNA495860.
Dipeptidyl-peptidase 6 (DPP6) is an auxiliary subunit of Kv4-mediated A-type K+ channels that, in addition to enhancing channel surface expression, potently accelerates their kinetics. The DPP6 gene has been associated with a number of human CNS disorders including ASDs and schizophrenia. Here we employ knockdown and genetic deletion of DPP6 to reveal its importance for the formation and stability of dendritic filopodia during early neuronal development. We find that hippocampal neurons lacking DPP6 show a sparser dendritic branching pattern along with fewer spines throughout development and into adulthood. In electrophysiological and imaging experiments we show that these deficits lead to fewer functional synapses and occur independently of the potassium channel subunit Kv4.2. We report that the extracellular domain of DPP6 interacts with a filopodia-associated myosin as well as with fibronectin in the extracellular matrix. DPP6 therefore plays an unexpected but important role in cell-adhesion and motility, impacting hippocampal synaptic development and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.