Influence of mechanical and geometrical properties of embedded long-gauge strain sensors to the accuracy of the strain measurement
Up-and-down cyclical displacement of supports-foundations, due for example to the presence of expansive soils, can affect the integrity of a structure and may even lead to its collapse. A recent study carried out at the ICITECH laboratories of the Universitat Politècnica de València analysed the effects of earth settlements on the behaviour of masonry cross vaults. One of the tests involved the construction and testing of a full-scale timbrel cross vault, one of whose supports was subjected to up-and-down vertical displacement cycles. The 4×4 m 2 vault was composed of four 3.6 m diameter arches supporting a masonry web. Vertical displacements were applied to one of the supports by means of two synchronised mechanical jacks. The results of the tests provide valuable information to the scientific community, architects and engineers on the behaviour of timbrel cross vaults when one of their supports is subjected to cyclical movements.
Abstract:Temperature, one of the most important parameters in building fires, is now mostly measured with hightemperature thermocouples, which have the typical drawbacks of electric sensors, such as their sensitivity to electrical and magnetic interference. Fiber optic sensors are an alternative to electric sensors and offer many advantages, although their use in fire engineering is somewhat limited at the present time. This paper presents a set of new fiber optic sensors for measuring high temperatures, based on Regenerated Fiber Bragg Gratings (RFBGs). The sensors were placed near the surface of two concrete specimens and then tested under ISO 834 fire curve conditions for one hour. We consider this an important step forward in the application of hightemperature fiber optic sensors in fire engineering, as the sensors were subjected to direct flames and temperature increments of the order of 200 ºC/min, similar to those in a real fire. The FBG sensors measured maximum gas temperatures of circa 970 ºC, in good agreement with those provided by thermocouples in the same position. The gas temperature measurements of the FOSs were also compared with the adiabatic temperatures measured by plate thermometers and concrete specimens surface temperatures calculated with numerical heat transfer models.
Architectural heritage is usually built with masonry structures, which present problems under lateral in-plane loading conditions, such as wind pressure or earthquakes. In order to improve the shear behavior of masonry, the use of a fabric-reinforced cementitious matrix (FRCM) has become an interesting solution because of its synergy of mechanical properties and compatibility with masonry substrates. For a proper structural evaluation, the mechanical behavior of reinforced masonry and the FRCM itself needs to be characterized. Hence, a numerical model to evaluate the FRCM reinforcement requires some mechanical parameters that may be difficult to obtain. In this sense, the shear behavior of masonry can be evaluated by means of diagonal tension tests on small specimens (71 × 71 cm). In this work, a digital image correlation (DIC) monitoring system was used to control displacements and cracking patterns of masonry specimens under shear stress (induced by diagonal tension with FRCM layers) applied to one or two sides. In addition, the mechanical behavior of FRCM coupons under uniaxial tensile tests was also registered with DIC. The displacement measurements obtained by DIC were validated with the measurements registered with LVDT. Unlike LVDT-based techniques, DIC monitoring allowed us to measure deformations in masonry during the full test, detecting crack initiation even before it was visible to the eye.
Masonry walls exhibit low tensile strength and high material heterogeneity, which makes them especially vulnerable against cyclic loading conditions, such as those typical in earthquakes. This paper presents the experimental results obtained from tests on three masonry walls reinforced with textile reinforced mortar (TRM) materials subjected to in-plane cyclic loading. These full-scale masonry walls were tested in the LARGE laboratory at the University of Alicante (Alicante, Spain). The walls had been built using a traditional construction technique, with solid clay bricks layered with lime mortar. One specimen was tested and damaged by in-plane cyclic loading and was subsequently strengthened by a vertical layer of TRM with an overlapping of 200 mm. It was then tested again until failure in a second test. In addition, another undamaged specimen had been previously reinforced with the same TRM technique and tested until failure, thus providing a third test. A network of sensors and digital image correlation systems were used to monitor displacements and crack patterns. The comparison between these experimental results made it possible to assess the effectiveness of TRM in restoring the structural integrity of damaged masonry walls and almost doubling their load-bearing capacity under cyclic loads. Conclusions obtained here provide valuable information to the scientific community, architects and structural engineers about the strengthening and repair of severely damaged masonry walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.