We investigate the structure of crossed product von Neumann algebras arising from Bogoljubov actions of countable groups on Shlyakhtenko's free Araki-Woods factors. Among other results, we settle the questions of factoriality and Connes' type classification. We moreover provide general criteria regarding fullness and strong solidity. As an application of our main results, we obtain examples of type III 0 factors that are prime, have no Cartan subalgebra and possess a maximal amenable abelian subalgebra. We also obtain a new class of strongly solid type III factors with prescribed Connes' invariants that are not isomorphic to any free Araki-Woods factors.Résumé. -Nous étudions la structure de produits croisés d'algèbres de von Neumann provenant des actions Bogoljubov de groupes dénombrables sur les facteurs d'Araki-Woods libres. Nous résolvons notamment les questions concernant la factorialité et la classification du type de Connes. Nous donnons également des critères généraux concernant le caractère plein et la solidité forte. Comme application de nos résultats, nous obtenons des exemples de facteurs de type III 0 qui sont premiers, sans sous-algèbre de Cartan et qui possèdent une sous-algèbre maximale moyennable abélienne. Nous obtenons aussi une nouvelle classe de facteurs fortement solides de type III avec des invariants de Connes prescrits et qui ne sont pas isomorphes à des facteurs d'Araki-Woods libres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.