Fetuses with congenital heart disease (CHD) have circulatory abnormalities that may compromise cerebral oxygen delivery. We believe that some CHD fetuses with decreased cerebral oxygen supply have autoregulation of blood flow that enhances cerebral perfusion (brain sparing). We hypothesize that cerebral autoregulation occurs in CHD fetuses, and the degree of autoregulation is dependent on the specific CHD and correlates with intrauterine head circumferences. CHD fetuses were compared to normal fetuses. Data included cardiac diagnosis, cerebral and umbilical artery Doppler, head circumference, weight, and gestational age. The cerebral-to-placental resistance ratio (CPR) was assessed as a measure of cerebral autoregulation. CPR = cerebral/umbilical resistance index (RI) and RI = systolic-diastolic/systolic velocity (normal CPR > 1). CPR > 1 was found in 95% of normal vs 44% of CHD fetuses. The incidence of CPR < 1 was greatest in hypoplastic left or right heart fetuses. Compared to normal, cerebral RI was decreased in CHD fetuses. The CPR vs gestational age relationship, and the relationship among weight, head circumference, and CPR differed across normal and CHD fetuses. Fetuses > 2 kg with CHD and a CPR < 1 had smaller head circumferences than normal. Brain sparing occurs in CHD fetuses. Fetuses with single ventricular physiology are most affected. Inadequate cerebral flow in CHD fetuses, despite autoregulation, may alter brain growth.
Background-Dystrophin gene mutations cause 2 common muscular dystrophies, Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Both are frequently associated with dilated cardiomyopathy (DCM) and premature death. We hypothesized that early diagnosis and treatment of DCM in DMD/BMD patients would lead to ventricular remodeling and that specific dystrophin gene mutations would predict cardiac involvement. Methods and Results-Sixty-nine boys with DMD (nϭ62) and BMD (nϭ7) (mean age, 12.9 and 13.7 years, respectively) were referred to our Cardiovascular Genetics Clinic for evaluation, including echocardiography and DNA analysis. Follow-up evaluations were scheduled yearly until the first abnormal echocardiogram indicative of DCM and quarterly thereafter. After the first abnormal echocardiogram, angiotensin-converting enzyme inhibitor or -blocker therapy was started. -Blockers were added if echocardiography showed no ventricular remodeling in angiotensin-converting enzyme inhibitor-treated patients after 3 months. DCM was diagnosed in 31 subjects (DMD, 27/62, 44%; BMD, 4/7, 57%) (mean age at onset, 15.4Ϯ2.8 years; range, 10.4 to 21.2 years). All 31 subjects were begun on pharmacological therapy after diagnosis. On follow-up (nϭ29), 2 subjects (both DMD) showed stable DCM, 8 subjects (all DMD) showed improvement, and 19 subjects (16 DMD; 3 BMD) showed normalization of left ventricular size and function (total improvement, 27/29 [93%]). DNA analysis in 47 cases (68%) revealed a significant association between DCM and exon 12 and 14 to 17 mutations, possible protection against DCM by exon 51 to 52 mutations, and a trend toward significant association between onset of DCM and exon 31 to 42 mutations. Statistical significance was based on nominal probability values. Conclusions-Early
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.