Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma.
Parsimony, likelihood, and Bayesian analyses of nuclear ITS and plastid trnL-F DNA sequence data are presented for the giant genus Croton (Euphorbiaceae s.s.) and related taxa. Sampling comprises 88 taxa, including 78 of the estimated 1223 species and 29 of the 40 sections previously recognized of Croton. It also includes the satellite genus Moacroton and genera formerly placed in tribe Crotoneae. Croton and all sampled segregate genera form a monophyletic group sister to Brasiliocroton, with the exception of Croton sect. Astraea, which is reinstated to the genus Astraea. A small clade including Moacroton, Croton alabamensis, and C. olivaceus is sister to all other Croton species sampled. The remaining Croton species fall into three major clades. One of these is entirely New World, corresponding to sections Cyclostigma, Cascarilla, and Velamea sensu Webster. The second is entirely Old World and is sister to a third, also entirely New World clade, which is composed of at least 13 of Webster's sections of Croton. This study establishes a phylogenetic framework for future studies in the hyper-diverse genus Croton, indicates a New World origin for the genus, and will soon be used to evaluate wood anatomical, cytological, and morphological data in the Crotoneae tribe.
Euphorbia is among the largest genera of angiosperms, with about 2000 species that are renowned for their remarkably diverse growth forms. To clarify phylogenetic relationships in the genus, we used maximum likelihood, bayesian, and parsimony analyses of DNA sequence data from 10 markers representing all three plant genomes, averaging more than 16kbp for each accession. Taxon sampling included 176 representatives from Euphorbioideae (including 161 of Euphorbia). Analyses of these data robustly resolve a backbone topology of four major, subgeneric clades--Esula, Rhizanthium, Euphorbia, and Chamaesyce--that are successively sister lineages. Ancestral state reconstructions of six reproductive and growth form characters indicate that the earliest Euphorbia species were likely woody, non-succulent plants with helically arranged leaves and 5-glanded cyathia in terminal inflorescences. The highly modified growth forms and reproductive features in Euphorbia have independent origins within the subgeneric clades. Examples of extreme parallelism in trait evolution include at least 14 origins of xeromorphic growth forms and at least 13 origins of seed caruncles. The evolution of growth form and inflorescence position are significantly correlated, and a pathway of evolutionary transitions is supported that has implications for the evolution of Euphorbia xerophytes of large stature. Such xerophytes total more than 400 species and are dominants of vegetation types throughout much of arid Africa and Madagascar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.