Ocean mixing around Antarctica exerts key influences on glacier dynamics and ice shelf retreats, sea ice, and marine productivity, thus affecting global sea level and climate. The conventional paradigm is that this is dominated by winds, tides, and buoyancy forcing. Direct observations from the Antarctic Peninsula demonstrate that glacier calving triggers internal tsunamis, the breaking of which drives vigorous mixing. Being widespread and frequent, these internal tsunamis are at least comparable to winds, and much more important than tides, in driving regional shelf mixing. They are likely relevant everywhere that marine-terminating glaciers calve, including Greenland and across the Arctic. Calving frequency may change with higher ocean temperatures, suggesting possible shifts to internal tsunamigenesis and mixing in a warming climate.
<p>In Antarctica changes to ice dynamics dominate the ice sheet&#8217;s contribution to rising sea-levels. The Antarctic Peninsula (AP), has undergone the greatest atmospheric warming of any southern hemisphere terrestrial area in the 20<sup>th</sup> century. Over the last three decades, the AP has experienced significant change; floating ice shelves have collapsed and retreated, and the loss of ice shelf buttressing strength has led to an acceleration in ice speed and dynamic thinning of the grounded ice. On the west coast warming ocean water at depth has been linked to glacier terminus retreat, acceleration, and grounding line retreat.</p> <p>In this study, we use feature tracking of Sentinel-1 synthetic aperture radar (SAR) imagery to measure ice speed of the Antarctic Peninsula&#8217;s west coast tidewater glaciers from 2014-2022 at 6-12 day temporal resolution.</p> <p>Our results show widespread patterns of increased summertime ice speed over a study area of 105 tidewater glaciers. We observe average seasonal speed variability of 12.4 &#177; 4.2 %, with maximum speed change of 22.3 &#177; 3.2 % on glaciers with the most pronounced seasonality. We also measure ice dynamic changes on inter-annual timescales on the west AP coast in this period. We study one example, Cadman Glacier, in detail, which has increased speed by 1025 &#177; 83 m/yr (41.6%) from October 2018 to November 2019. This increased flow speed has been maintained until at least May 2022 causing terminus retreat, increased ice discharge, and dynamic thinning of grounded ice by 20.3 &#177; 2.1 m/yr.</p> <p>We investigate forcing mechanisms which may cause the seasonal and long-term dynamic variability we observe using a regional climate model, ocean temperature reanalysis data and remote sensing observations of terminus position. We find that summertime speed increases may be explained by a combination of perennial firn aquifer modulated meltwater runoff and seasonal patterns of terminus position change, revealing that these glaciers can respond to forcings on seasonal timescales. For the longer-term speed change, we find that the large acceleration of Cadman glacier is coincident with a period of anomalously high ocean temperatures on the west AP shelf.</p>
<p>In Antarctica dynamic ice loss dominates the continent&#8217;s contribution to sea level rise and the magnitude of dynamic ice loss depends in part on the ice speed at marine-terminating glacier grounding lines. Long term dynamic ice speed variations in Antarctica have been observed on multi-year timescales, most notably in ice speed increases in the Amundsen Sea sector, Getz basin and Antarctic Peninsula. Glacier and ice sheet speed can also be variable on seasonal timescales, due to surface meltwater-induced variations in basal water pressure and changes in the force balance at the terminus due to terminus advance and retreat. While these seasonal changes are well documented on the Greenland Ice Sheet, observations of seasonal ice speed changes in Antarctica are sparse and poorly resolved.</p><p>In this study, we show widespread seasonal ice speed fluctuations near the termini of 106 tidewater outlet glaciers across Western Antarctic Peninsula North of 70&#176; S by exploiting the full Sentinel-1 record from 2014 to 2021. The seasonal speed variations were consistent each year, and are characterised by a summertime speed-up, with speed variability on average 13 &#177; 6.5% of the annual mean. There is good agreement between our observations of seasonal ice speed changes and time-series of potential forcing mechanisms, including surface water flux, terminus position change and reanalyses of ocean temperature. Our results demonstrate that the glaciers of the Western Antarctic Peninsula are sensitive to forcing in the ice-ocean-atmosphere system on seasonal timescales.</p><p>By observing widespread seasonal ice speed variations on the Antarctic Peninsula for the first time, we demonstrate a previously unknown sensitivity of part of the Antarctic Ice Sheet to external forcing over short timescales. This is particularly relevant for mass balance calculations by the input-output method, which typically rely on annual estimates of ice speed that do not capture these seasonal changes. Our dataset covers the Sentinel-1 epoch (2014-present), however the Antarctic Peninsula has undergone the greatest warming of any Southern Hemisphere terrestrial area in the latter twentieth century and atmospheric temperatures are projected to rise further in a 1.5&#176;C warming scenario. Therefore, it is essential to understand the historic prevalence of seasonal speed changes on the Peninsula and to determine the impact of these seasonal variations on annual ice motion, to improve future projections of the Antarctic response to continued warming and its contributions to sea level rise.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.