Abstract. Vegetation optical depth (VOD) from microwave satellite observations has received much attention in global vegetation studies in recent years due to its relationship to vegetation water content and biomass. We recently have shown that VOD is related to plant productivity, i.e., gross primary production (GPP). Based on this relationship between VOD and GPP, we developed a theory-based machine learning model to estimate global patterns of GPP from passive microwave VOD retrievals. The VOD-GPP model generally showed good agreement with site observations and other global data sets in temporal dynamic but tended to overestimate annual GPP across all latitudes. We hypothesized that the reason for the overestimation is the missing effect of temperature on autotrophic respiration in the theory-based machine learning model. Here we aim to further assess and enhance the robustness of the VOD-GPP model by including the effect of temperature on autotrophic respiration within the machine learning approach and by assessing the interannual variability of the model results with respect to water availability. We used X-band VOD from the VOD Climate Archive (VODCA) data set for estimating GPP and used global state-of-the-art GPP data sets from FLUXCOM and MODIS to assess residuals of the VOD-GPP model with respect to drought conditions as quantified by the Standardized Precipitation and Evaporation Index (SPEI). Our results reveal an improvement in model performance for correlation when including the temperature dependency of autotrophic respiration (average correlation increase of 0.18). This improvement in temporal dynamic is larger for temperate and cold regions than for the tropics. For unbiased root-mean-square error (ubRMSE) and bias, the results are regionally diverse and are compensated in the global average. Improvements are observed in temperate and cold regions, while decreases in performance are obtained mainly in the tropics. The overall improvement when adding temperature was less than expected and thus may only partly explain previously observed differences between the global GPP data sets. On interannual timescales, estimates of the VOD-GPP model agree well with GPP from FLUXCOM and MODIS. We further find that the residuals between VOD-based GPP estimates and the other data sets do not significantly correlate with SPEI, which demonstrates that the VOD-GPP model can capture responses of GPP to water availability even without including additional information on precipitation, soil moisture or evapotranspiration. Exceptions from this rule were found in some regions: significant negative correlations between VOD-GPP residuals and SPEI were observed in the US corn belt, Argentina, eastern Europe, Russia and China, while significant positive correlations were obtained in South America, Africa and Australia. In these regions, the significant correlations may indicate different plant strategies for dealing with variations in water availability. Overall, our findings support the robustness of global microwave-derived estimates of gross primary production for large-scale studies on climate–vegetation interactions.
Abstract. Long-term global monitoring of terrestrial gross primary production (GPP) is crucial for assessing ecosystem responses to global climate change. In recent decades, great advances have been made in estimating GPP and many global GPP datasets have been published. These datasets are based on observations from optical remote sensing, are upscaled from in situ measurements, or rely on process-based models. Although these approaches are well established within the scientific community, datasets nevertheless differ significantly. Here, we introduce the new VODCA2GPP dataset, which utilizes microwave remote sensing estimates of vegetation optical depth (VOD) to estimate GPP at the global scale for the period 1988–2020. VODCA2GPP applies a previously developed carbon-sink-driven approach (Teubner et al., 2019, 2021) to estimate GPP from the Vegetation Optical Depth Climate Archive (Moesinger et al., 2020; Zotta et al., 2022), which merges VOD observations from multiple sensors into one long-running, coherent data record. VODCA2GPP was trained and evaluated against FLUXNET in situ observations of GPP and compared against largely independent state-of-the-art GPP datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS), FLUXCOM, and the TRENDY-v7 process-based model ensemble. The site-level evaluation with FLUXNET GPP indicates an overall robust performance of VODCA2GPP with only a small bias and good temporal agreement. The comparisons with MODIS, FLUXCOM, and TRENDY-v7 show that VODCA2GPP exhibits very similar spatial patterns across all biomes but with a consistent positive bias. In terms of temporal dynamics, a high agreement was found for regions outside the humid tropics, with median correlations around 0.75. Concerning anomalies from the long-term climatology, VODCA2GPP correlates well with MODIS and TRENDY-v7 (Pearson's r 0.53 and 0.61) but less well with FLUXCOM (Pearson's r 0.29). A trend analysis for the period 1988–2019 did not exhibit a significant trend in VODCA2GPP at the global scale but rather suggests regionally different long-term changes in GPP. For the shorter overlapping observation period (2003–2015) of VODCA2GPP, MODIS, and the TRENDY-v7 ensemble, significant increases in global GPP were found. VODCA2GPP can complement existing GPP products and is a valuable dataset for the assessment of large-scale and long-term changes in GPP for global vegetation and carbon cycle studies. The VODCA2GPP dataset is available at the TU Data Repository of TU Wien (https://doi.org/10.48436/1k7aj-bdz35, Wild et al., 2021).
Abstract. Graffiti is a short-lived form of heritage balancing between tangible and intangible, offensive and pleasant. Graffiti makes people laugh, wonder, angry, think. These conflicting traits are all present along Vienna's Donaukanal (Eng. Danube Canal), a recreational hotspot – located in the city's heart – famous for its endless display of graffiti. The graffiti-focused heritage science project INDIGO aims to build the basis to systematically document, monitor, and analyse circa 13 km of Donaukanal graffiti in the next decade. The first part of this paper details INDIGO's goals and overarching methodological framework, simultaneously placing it into the broader landscape of graffiti research. The second part of the text concentrates on INDIGO's graffiti documentation activities. Given the project's aim to create a spatially, spectrally, and temporally accurate record of all possible mark-makings attached in (il)legal ways to the public urban surfaces of the Donaukanal, it seems appropriate to provide insights on the photographic plus image-based modelling activities that form the foundation of INDIGO's graffiti recording strategy. The text ends with some envisioned strategies to streamline image acquisition and process the anticipated hundreds of thousands of images.
Abstract. Long-term global monitoring of terrestrial Gross Primary Production (GPP) is crucial for assessing ecosystem response to global climate change. In recent years and decades, great advances in estimating GPP on a global level have been made and many global GPP datasets have been published. These global data records are either based on observations from optical remote sensing, are upscaled from in situ measurements, or rely on process-based models. The different estimation approaches are well established within the scientific community but also exhibit significant discrepancies among each other. Here, we introduce the new VODCA2GPP dataset, which utilizes microwave remote sensing estimates of Vegetation Optical Depth (VOD) to estimate GPP on a global scale. VODCA2GPP is able to complement existing products with long-term GPP estimates covering the period 1988–2020. VODCA2GPP applies a previously developed carbon sink-driven approach (Teubner et al., 2019, 2021) to estimate GPP from the Vegetation Optical Depth Climate Archive (Zotta et al., in prep.; Moesinger et al., 2020), which merges VOD observations from multiple sensors into one long-running, coherent data record. VODCA2GPP was trained and evaluated against FLUXNET in situ observations of GPP and assessed against largely independent state-of-the art GPP datasets (MODIS GPP, FLUXCOM GPP, and GPP estimates from the TRENDY-v7 model ensemble). These assessments show that VODCA2GPP exhibits very similar spatial patterns compared to existing GPP datasets across all biomes but with a consistent positive bias. In terms of temporal dynamics, a high agreement was found for regions outside the humid tropics, with median correlations around 0.75. Concerning anomalies from the long-term climatology, VODCA2GPP correlates well with MODIS and TRENDY-v7 GPP (Pearson’s r: 0.53 and 0.61) but less with FLUXCOM GPP (Pearson’s r: 0.29). A trend analysis for the period 1988–2019 did not exhibit a significant trend in VODCA2GPP on a global scale but rather suggests regionally differing long-term changes in GPP. Significant similar increases of global GPP that were found for VODCA2GPP, MODIS GPP, and the TRENDY-v7 ensemble for the shorter overlapping observation period (2003–2015) supports the theory of elevated CO2 uptake potentially induced by increased atmospheric CO2 concentrations and the associated rising temperatures. The VODCA2GPP dataset is available at TU Data (https://doi.org/10.48436/1k7aj-bdz35; Wild et al., 2021).
Admired and despised, created and destroyed, legal and illegal: Contemporary graffiti are polarising, and not everybody agrees to label them as cultural heritage. However, if one is among the steadily increasing number of heritage professionals and academics that value these short-lived creations, their digital documentation can be considered a part of our legacy to future generations. To document the geometric and spectral properties of a graffito, digital photographs seem to be appropriate. This also holds true when documenting an entire graffiti-scape consisting of 1000s of individual creations. However, proper photo-based digital documentation of such an entire scene comes with logistical and technical challenges, certainly if the documentation is considered the basis for further analysis of the heritage assets. One main technical challenge relates to the photographs themselves. Conventional photographs suffer from multiple image distortions and usually lack a uniform scale, which hinders the derivation of dimensions and proportions. In addition, a single graffito photograph often does not reflect the meaning and setting intended by the graffitist, as the creation is frequently shown as an isolated entity without its surrounding environment. In other words, single photographs lack the spatio-temporal context, which is often of major importance in cultural heritage studies. Here, we present AUTOGRAF, an automated and freely-available orthorectification tool which converts conventional graffiti photos into high-resolution, distortion-free, and georeferenced graffiti orthophotomaps, a metric yet visual product. AUTOGRAF was developed in the framework of INDIGO, a graffiti-centred research project. Not only do these georeferenced photos support proper analysis, but they also set the basis for placing the graffiti in their native, albeit virtual, 3D environment. An experiment showed that 95 out of 100 tested graffiti photo sets were successfully orthorectified, highlighting the proposed methodology’s potential to improve and automate one part of contemporary graffiti’s digital preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.