Bei der Instandsetzung von Stahlbetonbauteilen muss, um die Dauerhaftigkeit sicherzustellen, die Betondeckung hinreichend groß gewählt werden. Der Einsatz alternativer Bewehrungsmaterialien wie z. B. Basalt als Faserverbundstab bietet durch die Korrosionsbeständigkeit gegenüber Karbonatisierung und Chlorideinwirkung die Möglichkeit, die Betondeckung zur Sicherstellung der Dauerhaftigkeit zu minimieren und gleichzeitig korrosionsresistente Bauteile zu erstellen. Nachfolgend werden – als Auszug aus einem Forschungsprojekt zur Untersuchung zur Instandsetzung von Sichtbetonfassadenelementen mittels Basaltstabbewehrung und Spritzbeton – Untersuchungen zum Tragverhalten von basaltbewehrten Verbundkörpern präsentiert. Die geprüften „Basaltfaserverstärkten Kunststoff‐Bewehrungsstäbe“ (BFVK‐Stab) weisen am reinen Stab höhere Zugfestigkeiten bei geringeren E‐Moduln als vergleichbare Betonstähle auf. Im zentrischen Zugversuch an bewehrten Betonknochenproben zeigen sich bei den Prüfkörpern mit der BFVK‐Stabbewehrung Längsrisse infolge hoher Spannungen im Verbundbereich sowie eine höhere Anzahl an breiteren Querrissen als im betonstahlbewehrten Referenzprüfkörper. Mithilfe numerischer Simulationen kann das Zug‐Verformungsverhalten der Prüfkörper gut nachgebildet werden. Bei der lichtmikroskopischen Untersuchung präparierter Prüfkörper nach der Zugprüfung zeigten sich verstärkt Mikrorisse, ausgehend von der Kontaktzone zwischen BFVK‐Stab zur Betonmatrix. Bei den Auszugsversuchen versagte stets der Beton, nicht die BFVK‐Stabbewehrung. Die Untersuchungsergebnisse belegen, dass der Einsatz von Basaltstabbewehrung in Beton die Herstellung dauerhafter Bauteile mit geringen Betondeckungen ermöglicht. Weitere Versuche wurden bereits zum Biegetragverhalten, zur Dauerschwingfestigkeit und Dauerhaftigkeit durchgeführt. Derzeit werden weitere Basaltbewehrungsstäbe anderer Geometrien untersucht.
Reinforced concrete facades exist since decades exposed to natural weather conditions. Thus nowadays lot of them are damaged by carbonation induced corrosion and therefor require repairing and retrofitting. The aim of this research project is to investigate the possibilities of basalt fibre reinforced concrete as repairing material and also basalt rebars as additional strengthening reinforcement. Investigations with basalt fibre reinforced mortar prisms showed best results in 3 point bending tests, tensile strength and also compressive strength using 0.3 Vol.-% basalt fibres in mixture. The mechanical properties of basalt rebars made of basalt fibre reinforced polymer were tested, showing higher values in tensile strength and Young´s Modulus than comparable steel reinforcement samples. The basalt rebar reinforced concrete samples achieved higher ultimate loads in three-point bending test compared to SRC samples. But after failure in the bonding area no residual load capacity remained. Finally basalt reinforcement bars seems to be well suited for use as retrofitting material for facade elements, but numerous properties have to be examined in further investigations.
The building materials industry makes a major contribution to greenhouse gases emitted each year, particularly by the cement clinker production. Therefore, the aim should be to maintain an increased part of building material from demolition sites in the material cycle. The use of the fine material (< 2mm) from demolition waste in concrete has so far proved to be problematic due to the increased water demand and loss of compressive strength. One approach is the use of recycled concrete powder (RCP) as supplementary cementitious material (SCM). Demolition material used in this study has been obtained from discarded railroad sleepers and pre-crushed as sand (< 4 mm). The recycled sand was subjected to a mechanical and thermal activation process before use, then was ground to a particle size <63 μm and then fired at 4 different temperatures (750°C, 800°C, 850°C, 900°C). The aim was to convert parts of the hydrated C-S-H structure back into reactive silicate phases through firing process. They can contribute again to the hydration process when used as supplementary cementitious material. The ground and thermally treated material - called SCM - wasexamined for their physical and chemical properties. Subsequently, 10 and 20 Vol.-% were replaced by the SCM in a binder mixture, respectively. In a first step, the different water demand of the binders was documented. Ultrasonic methods were used to investigate the stiffening and setting behaviour of the binders. The decisive factor here was the proportion of chemically bound water in the binder mixtures. Finally, the mechanical properties of the binders were investigated in mortar tests. Acceptable compressive strengths were achieved compared to the reference mortar (mortar mixture without cement substitution). At first glance, it seems possible to use it as an SCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.