Summary
We consider how to estimate the trend and cycle of a time series, such as real gross domestic product, given a large information set. Our approach makes use of the Beveridge–Nelson decomposition based on a vector autoregression, but with two practical considerations. First, we show how to determine which conditioning variables span the relevant information by directly accounting for the Beveridge–Nelson trend and cycle in terms of contributions from different forecast errors. Second, we employ Bayesian shrinkage to avoid overfitting in finite samples when estimating models that are large enough to include many possible sources of information. An empirical application with up to 138 variables covering various aspects of the US economy reveals that the unemployment rate, inflation, and, to a lesser extent, housing starts, aggregate consumption, stock prices, real money balances, and the federal funds rate contain relevant information beyond that in output growth for estimating the output gap, with estimates largely robust to substituting some of these variables or incorporating additional variables.
BIS Working Papers are written by members of the Monetary and Economic Department of the Bank for International Settlements, and from time to time by other economists, and are published by the Bank. The papers are on subjects of topical interest and are technical in character. The views expressed in them are those of their authors and not necessarily the views of the BIS. This publication is available on the BIS website (www.bis.org).
BIS Working Papers are written by members of the Monetary and Economic Department of the Bank for International Settlements, and from time to time by other economists, and are published by the Bank. The papers are on subjects of topical interest and are technical in character. The views expressed in them are those of their authors and not necessarily the views of the BIS. This publication is available on the BIS website (www.bis.org).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.