Energy restriction induces physiological effects that hinder further weight loss. Thus, deliberate periods of energy balance during weight loss interventions may attenuate these adaptive responses to energy restriction and thereby increase the efficiency of weight loss (i.e. the amount of weight or fat lost per unit of energy deficit). To address this possibility, we systematically searched MEDLINE, PreMEDLINE, PubMed and Cinahl and reviewed adaptive responses to energy restriction in 40 publications involving humans of any age or body mass index that had undergone a diet involving intermittent energy restriction, 12 with direct comparison to continuous energy restriction. Included publications needed to measure one or more of body weight, body mass index, or body composition before and at the end of energy restriction. 31 of the 40 publications involved 'intermittent fasting' of 1-7-day periods of severe energy restriction. While intermittent fasting appears to produce similar effects to continuous energy restriction to reduce body weight, fat mass, fat-free mass and improve glucose homeostasis, and may reduce appetite, it does not appear to attenuate other adaptive responses to energy restriction or improve weight loss efficiency, albeit most of the reviewed publications were not powered to assess these outcomes. Intermittent fasting thus represents a valid--albeit apparently not superior--option to continuous energy restriction for weight loss.
Aim To evaluate an automated retinal image analysis (ARIA) of indigenous retinal fundus images against a human grading comparator for the classification of diabetic retinopathy (DR) status. Methods Indigenous Australian adults with type 2 diabetes (n = 410) from three remote and very remote primary‐care services in the Northern Territory, Australia, underwent teleretinal DR screening. A single, central retinal fundus photograph (opportunistic mydriasis) for each eye was later regraded using a single ARIA and a UK human grader and national DR classification system. The sensitivity and specificity of ARIA were assessed relative to the comparator. Proportionate agreement and a Kappa statistic were also computed. Results Retinal images from 391 and 393 participants were gradable for ‘Any DR’ by the human grader and ARIA grader, respectively. ‘Any DR’ was detected by the human grader in 185 (47.3%) participants and by ARIA in 202 (48.6%) participants (agreement =88.0%, Kappa = 0.76,), whereas proliferative DR was detected in 31 (7.9%) and 37 (9.4%) participants (agreement = 98.2%, Kappa = 0.89,), respectively. The ARIA software had 91.4 (95% CI, 86.3–95.0) sensitivity and 85.0 (95% CI, 79.3–89.5) specificity for detecting ‘Any DR’ and 96.8 (95% CI, 83.3–99.9) sensitivity and 98.3 (95% CI, 96.4–99.4) specificity for detecting proliferative DR. Conclusions This ARIA software has high sensitivity for detecting ‘Any DR’, hence could be used as a triage tool for human graders. High sensitivity was also found for detection of proliferative DR by ARIA. Future versions of this ARIA should include maculopathy and referable DR (CSME and/or PDR). Such ARIA software may benefit diabetes care in less‐resourced regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.