Foveated imaging systems have the ability to capture local high-resolution or high-magnification images with wide field of view (FOV); thus, they have great potential for applications in the field of monitoring and remote sensing of unmanned aerial vehicles. Hence, foveated optical systems are in strong demand. However, the existing foveated imaging systems either are equipped with expensive modulators or require fixing the local high resolution imaging field, which is not suitable for mass production or object tracking in industrial applications. We propose a low-cost dynamic real-time foveated imaging system for extensive use in the listed applications. Specifically, we place a microlens behind the first intermediary image plane to modulate the local focal length, constructing a local high magnification imaging channel. One two-axis translation stage drives the microlens to scan in the plane perpendicular to the optical axis, resulting in dynamic local high magnifying imaging. Furthermore, the peripheral imaging channel and the foveated imaging channel focus on the same detector, and the post image fusion is unnecessary; the system consists of only a common aspherical lens and thus is very inexpensive. The experimental system has a focal length of 25 mm, a full FOV of 30°, and an entrance pupil diameter of 5 mm, while the local high magnifying imaging channel has a focal length of 35 mm and FOV of 15°. Experiment results show that the low-cost dynamic real-time foveated imaging system performs very well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.