The input voltage of battery charging system is always above the battery nominal voltage and it should be remained constant. But it depends on the type of input voltage sources. A battery charged directly by photovoltaic (PV) module as the input voltage source can cause the output voltage of PV module or the input voltage of battery charging system can fluctuate, because the output voltage of PV module depends on the solar irradiance. This problem can be solved by installing DC-DC boost converter between the PV module and battery. This paper presents a DC-DC boost converter based on PID controller for battery charging system. It is designed for the input voltage of 12V and output voltage of 14.7V system because it is applied to charge a 12 V, 7 Ah lead acid battery. Based on the simulation result of battery charging system shows that the output voltage of DC-DC boost converter can be remain around 14.7 V. It is due to the PID controller can damp the voltage oscillation and remain its steady state voltage. The time needed by the DC-DC boost converter to charge the battery in the fully charging condition is 1 hour: 3 minutes: 37seconds.
Due to the highly non-linear electrical characteristics of photovoltaic generators (PVGs), the efficiency of PV systems can be improved by forcing the GPV to operate at their maximum power point (MPP). In this article, we are interested in concentrating Photovoltaic design to improve the output current of the panelwhile maintaining the DCDC boost element, after presenting the basic structure of Boost DC-DC converter, which shows the existence of a limitation on the voltage gain for this converter. In order to meet the specifications (high voltage gain and low ripple of the input current), existing structures will be presented that are able to provide a high voltage gain (Photovoltaic concentration) compared to another structure
<p>Photovoltaic (PV) systems can be made more efficient by forcing the PV panel to operate at its maximum point power due to the electrical properties of photovoltaic generators, which are substantially non-linear (MPP). This study examines the effectiveness of using a combination of parabolic concentrator Bi-reflector and heat exchanger as a cooling system on the performance of photovoltaic generators to get a photovoltaic/thermal (PV/T) system, and their effect on the direct current (DCDC) converter using matrix laboratory (MATLAB) simulink. The experimental tests were carried out under various temperature values and sun irradiation. The results demonstrated that the use of parabolic Bi-reflectors, to further illumine te the panels, and the use of the cooling system to absorb excess heat to get heat water, could increase and enhances performances of the photovoltaic generator.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.