Autism Spectrum Disorder (ASD) is a developmental disorder that is prevalent globally. Research into detecting autism traditionally focused on behavioural aspects of the condition, however, more recently, focus has shifted to more objective alternatives using techniques such as machine learning and gait analysis. Gait measurements, having been used for person identification, varies from person to person, introducing a lot of intra-subject variance. This applies to the 8 spatialtemporal features used in this study, representing the time that an individual spends in each phase of a gait cycle, collected using a Vicon motion tracking system. The features were averaged across each gait trial that the subjects performed, producing a second set of features with reduced intra-subject variance. Four common classifiers, a Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forests (RF) and a Decision Tree (DT) classifier, were all trained using the two feature sets and their classification rates were compared. The results show that for the RF classifier, reducing the intra-subject variance, was able to successfully increase the classification power. The KNN and DT classifiers experienced a minimal decrease in accuracy, where the SVM suffered the greatest loss when intrasubject variance was reduced. Results overall show that the effect intra-subject variance has on classification power depends heavily on the suitability of the classifier to the initial problem as well as size and class balance of the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.