For an improved understanding of the structural basis of cellular mechanisms, it is highly desirable to develop methods for a detailed topological analysis of biological nanostructures and their dynamics in the interior of three-dimensionally conserved cells. We present a method of far-field laser fluorescence microscopy to measure relative axial positions of pointlike fluorescent targets and the distance between each target in the range of a few nanometers. The physical principle behind this approach can be extended to the determination of three-dimensional (3D) positions and 3D distances between any number of objects that can be discriminated owing to their spectral signature, thus allowing topological measurements so far regarded to be beyond the capabilities of light microscopy.
A new approach to measuring the sizes of small fluorescent objects by use of spatially modulated illumination (SMI) far-field light microscopy is presented. This method is based on SME measurements combined with a new SMI virtual microscopy (VIM) data analysis calibration algorithm. Here, experimental SMI measurements of fluorescent objects with known diameter (size) were made. From the SMI data obtained, the size was determined in an independent way by use of the SMI VIM algorithm. The results showed that with SMI microscopy in combination with SMI VIM calibration, subwavelength object size measurements as small as 40 nm are experimentally feasible with high accuracy.
During the last years, measurements considerably beyond the conventional "Abbe-Limit" of optical resolution in far field light microscopy were realized by several light microscopical approaches. Point spread function (PSF) engineering, spectral precision distance microscopy (SPDM), and related methods were used to demonstrate the feasibility of such measurements. SPDM allows the measurement of position and multiple distances between point-like fluorescent objects of different spectral signatures far below the optical resolution criterion as defined by the full width at half maximum of the PSF. Here, we report a software method to obtain online visualization of light distribution in the lateral and axial direction of any object detected in a spatially modulated illumination (SMI) microscope. This strongly facilitates routine application of SMI microscopy. The software was developed using Microsoft Visual C++ running on Windows NT. Furthermore, some aspects of the theoretical limits of the SPDM method were studied by virtual microscopy. For the case of SMI microscopy the precision of axial distance measurements was studied, taking into account photon statistics and image analysis procedures. The results indicate that even under low fluorescence intensity conditions typical for biological structure research, precise distance measurements in the nanometer range can be determined, and that axial distances in the order of 40 nm are detectable with such precision.
For an improved understanding of cellular processes, it is highly desirable to develop light optical methods for the analysis of biological nanostructures and their dynamics in the interior of three-dimensionally (3D) conserved cells. Here, important structural parameters to be considered are the topology, i.e. the mutual positions and distances, as well as the sizes of the constituting subunits. This has become possible by the development of a novel method of far-field light fluorescence microscopy, spatially modulated illumination (SMI) microscopy. Using this approach, axial distances between fluorescence-labeled targets can be measured with an accuracy close to 1 nm; their sizes can be determined down to a few tens of nanometers. This approach can be extended to the determination of 3D positions and mutual 3D distances and sizes of any number of small objects/subunits that can be discriminated due to their spectral signatures. Consequently, the new approach allows an ‘in situ nanostructure elucidation, until now regarded to be beyond the possibilities of far-field light microscopy. Application examples discussed are: colocalization/nanosizing and topological analysis of large protein-protein complexes, of nucleic acid-protein complexes (such as transcription factories), or of the highly complex DNA-protein nanostructures of which active/ inactive gene regions in the eukaryotic cell nucleus are constituted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.