Mutations in BSCL2 underlie human congenital generalized lipodystrophy. We inactivated Bscl2 in mice to examine the mechanisms whereby absence of Bscl2 leads to adipose tissue loss and metabolic disorders. Bscl2 ؊/؊ mice develop severe lipodystrophy of white adipose tissue (WAT), dyslipidemia, insulin resistance, and hepatic steatosis. In vitro differentiation of both Bscl2
Previous reports showed that recombinant fragments of adiponectin (adipo) displayed pharmacological effects when injected into rodents, but the relevance of these observations to the physiological function of adipo is unclear. We generated Adipo ؊/؊ mice by gene targeting. Adipo ؊/؊ mice are fertile with normal body and fat pad weights. Plasma glucose and insulin levels of Adipo ؊/؊ and Adipo ؉/؉ mice are similar under fasting conditions and during an intraperitoneal glucose tolerance test (GTT). Insulin tolerance test (ITT) also produces similar plasma glucose and insulin levels in the two groups of mice. Hyperinsulinemic-euglycemic clamp analysis showed that Adipo ؊/؊ and Adipo ؉/؉ mice have similar glucose infusion rates to maintain a similar serum glucose. High-fat diet feeding for 7 months led to similar weight gain and similar GTT and ITT responses. We next measured -oxidation and found it to be significantly increased in muscle and liver of Adipo ؊/؊ mice. In conclusion, our study indicates that absence of adipo causes increased -oxidation but does not cause glucose intolerance or insulin resistance in mice.
We report here a novel mechanism for glucose-mediated activation of carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper (bHLH/ZIP) transcription factor of Mondo family that binds to carbohydrate response element in the promoter of some glucose-regulated genes and activates their expression upon glucose stimulation. Structure-function analysis of ChREBP in a highly glucose-sensitive system using GAL4-ChREBP fusion constructs revealed a glucose-sensing module (GSM) that mediates glucose responsiveness of ChREBP. GSM is conserved among Mondo family members; MondoA, a mammalian paralog of unknown function, and the GSM region of a Drosophila homolog were also found to be glucose responsive. GSM is composed of a low-glucose inhibitory domain (LID) and a glucose-response activation conserved element (GRACE). We have identified a new mechanism accounting for glucose responsiveness of ChREBP that involves specific inhibition of the transactivation activity of GRACE by LID under low glucose concentration and reversal of this inhibition by glucose in an orientation-sensitive manner. The intramolecular inhibition and its release by glucose is a regulatory mechanism that is independent of changes of subcellular localization or DNA binding activity, events that also appear to be involved in glucose responsiveness. This evolutionally conserved mechanism may play an essential role in glucose-responsive gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.