PPAR-δ agonists are known to enhance fatty acid metabolism, preserving glucose and physical endurance and are suggested as candidates for treating metabolic diseases. None have reached the clinic yet. Our Machine Learning algorithm called “Iterative Stochastic Elimination” (ISE) was applied to construct a ligand-based multi-filter ranking model to distinguish between confirmed PPAR-δ agonists and random molecules. Virtual screening of 1.56 million molecules by this model picked ~2500 top ranking molecules. Subsequent docking to PPAR-δ structures was mainly evaluated by geometric analysis of the docking poses rather than by energy criteria, leading to a set of 306 molecules that were sent for testing in vitro. Out of those, 13 molecules were found as potential PPAR-δ agonist leads with EC50 between 4–19 nM and 14 others with EC50 below 10 µM. Most of the nanomolar agonists were found to be highly selective for PPAR-δ and are structurally different than agonists used for model building.
Most enzymes act on more than a single substrate. There is frequently a need to block the production of a single pathogenic outcome of enzymatic activity on a substrate but to avoid blocking others of its catalytic actions. Full blocking might cause severe side effects because some products of that catalysis may be vital. Substrate selectivity is required but not possible to achieve by blocking the catalytic residues of an enzyme. That is the basis of the need for "Substrate Selective Inhibitors" (SSI), and there are several molecules characterized as SSI. However, none have yet been designed or discovered by computational methods. We demonstrate a computational approach to the discovery of Substrate Selective Inhibitors for one enzyme, Prolyl Oligopeptidase (POP) (E.C 3.4.21.26), a serine protease which cleaves small peptides between Pro and other amino acids. Among those are Thyrotropin Releasing Hormone (TRH) and Angiotensin-III (Ang-III), differing in both their binding (K m) and in turnover (k cat). We used our in-house "Iterative Stochastic Elimination" (ISE) algorithm and the structure-based "Pharmacophore" approach to construct two models for identifying SSI of POP. A dataset of~1.8 million commercially available molecules was initially reduced to less than 12,000 which were screened by these models to a final set of 20 molecules which were sent for experimental validation (five random molecules were tested for comparison). Two molecules out of these 20, one with a high score in the ISE model, the other successful in the pharmacophore model, were confirmed by in vitro measurements. One is a competitive inhibitor of Ang-III (increases its K m), but non-competitive towards TRH (decreases its V max).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.