Following infection of the host by Mycobacterium tuberculosis, induction of cytokines is a major defense mechanism to limit the pathogen invasion. Cytokines interact with each other to form an intertwined network of pathways. For example, IFN and TNF have been shown to interact through common pathways including IFN-inducible, dsRNA-activated serine/threonine protein kinase (PKR) induction. As a signal transducer, it has been conventionally known to regulate the induction of cytokine expression in response to virus infection through NF-κB. In light of the critical role of TNF in immunity and its cytotoxic effects mediated by PKR, we examined the role of the kinase in the regulation of immune response against M. tuberculosis using the interaction of bacillus Calmette-Guérin (BCG) and primary human blood monocytes as a model. Our results showed that BCG stimulates the induction of cytokine expression in human primary blood monocytes including TNF-α, IL-6, and IL-10. With the suppression of PKR by using PKR-mutant gene or 2-aminopurine as PKR inhibitor, we showed that the BCG-induced cytokine expression in human monocytes is regulated by the phosphorylation and activation of PKR. We also demonstrated that downstream of PKR induction is the activation of MAPK and translocation of NF-κB into the nucleus. NF-κB in turn mediates the transcription of specific cytokine genes. Taken together, PKR plays a critical role in the regulation of immune responses to mycobacterial infection and may serve as an important molecule in the innate antimycobacterial defense.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus. Since its associated morbidity and mortality have been postulated to be due to immune dysregulation, we investigated which of the viral proteins is responsible for chemokine overexpression. To delineate the viral and cellular factor interactions, the role of four SARS coronavirus proteins, including nonstructural protein 1 (nsp-1), nsp-5, envelope, and membrane, were examined in terms of cytokine induction. Our results showed that the SARS coronavirus nsp-1 plays an important role in CCL5, CXCL10, and CCL3 expression in human lung epithelial cells via the activation of NF-B.
HIV Tat has been known to have multiple regulatory roles including replication of HIV and modulation of cellular kinases. We investigated whether signaling kinase PKR plays a critical role in mediating Tat-induced cytokine dysregulation. We showed Tat induction of IL-10 dysregulation is associated with PKR activation. To examine the mechanism involved, inhibition of PKR activity abrogated the Tat-induced cytokine induction. We next identified that the MAP kinases including ERK-1/2 and p38 are downstream of PKR in these Tat-induced pathways. Thus, PKR may play a critical role in mediating the subversive effects of HIV Tat resulting in IL-10 induction.
IL-10, a potent anti-inflammatory cytokine, activates its primary mediator STAT3 to exert inhibitory effects on activated immune response. It has been reported that IFN-gamma signaling can be suppressed by IL-10, which deactivates macrophages and suppresses cell-mediated antigen presentation. Cathepsin S, a cysteine protease, plays a significant role in the antigen processing. We hypothesize that the IL-10-induced and STAT3-mediated signaling pathway interferes with IFN-gamma-induced immune responses in primary human blood macrophages. Here, we investigated whether IL-10 perturbs MHC-II levels via its effect on cathepsin S expression in antigen processing. We showed that the expression of cathepsin S and MHC-II, inducible by IFN-gamma, was down-regulated in the presence of IL-10. Additionally, we revealed that the inhibitory effect of IL-10 was demonstrated to be independent of the classical IFN-gamma-induced JAK2/STAT1 signaling cascade or the NF-kappaB pathway. Following STAT3 suppression with specific siRNA, the expression of IFN-gamma-induced surface MHC-II antigens and cathepsin S levels was restored, even in the presence of IL-10. Taken together, our results demonstrated that the immunosuppressive effects of IL-10-STAT3 on MHC-II antigen presentation may occur via the inhibition of cathepsin S expression.
Mtb dysregulates monocyte/macrophage functions to produce a large amount of the immunosuppressive cytokine IL-10. An important function of IL-10 in promoting Mtb survival is the suppression of antigen presentation of monocytes/macrophages to T cells. This dampens the host immune responses and provides an opportunity for immune evasion. GSK3 has been shown to control the balance between pro- and anti-inflammatory cytokine productions. Here, we investigated whether GSK3 regulates IL-10 expression and mediates a protective role upon live mycobacterial challenge using BCG as a model. Our results showed that BCG increased Akt phosphorylation and inhibited GSK3 activity, resulting in increased IL-10 production. We confirmed further that suppression of GSK3 activities by a specific chemical inhibitor strongly enhanced BCG-induced IL-10 production. We also showed that IL-10 secreted by BCG-infected human PBMo was a major suppressor of subsequent IFN-gamma production by PBMC and HLA-DR expression on PBMo in response to BCG. Neutralization of PBMo-secreted IL-10 by anti-IL-10 antibodies restored the IFN-gamma production and HLA-DR surface expression. Taken together, GSK3 negatively regulates mycobacteria-induced IL-10 production in human PBMo. The kinase may play a role in restoring IFN-gamma secretions and subsequent antigen presentation in response to mycobacterial infection. In conclusion, our results suggest a significant role for GSK3 in guarding against mycobacterial evasion of immunity via IL-10 induction in the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.