Fungal keratitis (FK) is the most devastating and vision-threatening microbial keratitis, but clinical diagnosis a great challenge. This study aimed to develop and verify a deep learning (DL)-based corneal photograph model for diagnosing FK. Corneal photos of laboratory-confirmed microbial keratitis were consecutively collected from a single referral center. A DL framework with DenseNet architecture was used to automatically recognize FK from the photo. The diagnoses of FK via corneal photograph for comparing DL-based models were made in the Expert and NCS-Oph group through a majority decision of three non-corneal specialty ophthalmologist and three corneal specialists, respectively. The average percentage of sensitivity, specificity, positive predictive value, and negative predictive value was approximately 71, 68, 60, and 78. The sensitivity was higher than that of the NCS-Oph (52%, P < .01), whereas the specificity was lower than that of the NCS-Oph (83%, P < .01). The average accuracy of around 70% was comparable with that of the NCS-Oph. Therefore, the sensitive DL-based diagnostic model is a promising tool for improving first-line medical care at rural area in early identification of FK.
Skin cancer is among the 10 most common cancers. Recent research revealed the superiority of artificial intelligence (AI) over dermatologists to diagnose skin cancer from predesignated and cropped images. However, there remain several uncertainties for AI in diagnosing skin cancers, including lack of testing for consistency, lack of pathological proof or ambiguous comparisons. Hence, to develop a reliable, feasible and user‐friendly platform to facilitate the automatic diagnostic algorithm is important. The aim of this study was to build a light‐weight skin cancer classification model based on deep learning methods for aiding first‐line medical care. The developed model can be deployed on cloud platforms as well as mobile devices for remote diagnostic applications. We reviewed the medical records and clinical images of patients who received a histological diagnosis of basal cell carcinoma, squamous cell carcinoma, melanoma, seborrheic keratosis and melanocytic nevus in 2006–2017 in the Department of Dermatology in Kaohsiung Chang Gung Memorial Hospital (KCGMH). We used the deep learning models to identify skin cancers and benign skin tumors in the manner of binary classification and multi‐class classification in the KCGMH and HAM10000 datasets to construct a skin cancer classification model. The accuracy reached 89.5% for the binary classifications (benign vs malignant) in the KCGMH dataset; the accuracy was 85.8% in the HAM10000 dataset in seven‐class classification and 72.1% in the KCGMH dataset in five‐class classification. Our results demonstrate that our skin cancer classification model based on deep learning methods is a highly promising aid for the clinical diagnosis and early identification of skin cancers and benign tumors.
Bacterial keratitis (BK), a painful and fulminant bacterial infection of the cornea, is the most common type of vision-threatening infectious keratitis (IK). A rapid clinical diagnosis by an ophthalmologist may often help prevent BK patients from progression to corneal melting or even perforation, but many rural areas cannot afford an ophthalmologist. Thanks to the rapid development of deep learning (DL) algorithms, artificial intelligence via image could provide an immediate screening and recommendation for patients with red and painful eyes. Therefore, this study aims to elucidate the potentials of different DL algorithms for diagnosing BK via external eye photos. External eye photos of clinically suspected IK were consecutively collected from five referral centers. The candidate DL frameworks, including ResNet50, ResNeXt50, DenseNet121, SE-ResNet50, EfficientNets B0, B1, B2, and B3, were trained to recognize BK from the photo toward the target with the greatest area under the receiver operating characteristic curve (AUROC). Via five-cross validation, EfficientNet B3 showed the most excellent average AUROC, in which the average percentage of sensitivity, specificity, positive predictive value, and negative predictive value was 74, 64, 77, and 61. There was no statistical difference in diagnostic accuracy and AUROC between any two of these DL frameworks. The diagnostic accuracy of these models (ranged from 69 to 72%) is comparable to that of the ophthalmologist (66% to 74%). Therefore, all these models are promising tools for diagnosing BK in first-line medical care units without ophthalmologists.
Background Identification of vertebral fractures (VFs) is critical for effective secondary fracture prevention owing to their association with the increasing risks of future fractures. Plain abdominal frontal radiographs (PARs) are a common investigation method performed for a variety of clinical indications and provide an ideal platform for the opportunistic identification of VF. This study uses a deep convolutional neural network (DCNN) to identify the feasibility for the screening, detection, and localization of VFs using PARs. Methods A DCNN was pretrained using ImageNet and retrained with 1306 images from the PARs database obtained between August 2015 and December 2018. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated. The visualization algorithm gradient-weighted class activation mapping (Grad-CAM) was used for model interpretation. Results Only 46.6% (204/438) of the VFs were diagnosed in the original PARs reports. The algorithm achieved 73.59% accuracy, 73.81% sensitivity, 73.02% specificity, and an AUC of 0.72 in the VF identification. Conclusion Computer driven solutions integrated with the DCNN have the potential to identify VFs with good accuracy when used opportunistically on PARs taken for a variety of clinical purposes. The proposed model can help clinicians become more efficient and economical in the current clinical pathway of fragile fracture treatment.
This investigation aimed to explore deep learning (DL) models’ potential for diagnosing Pseudomonas keratitis using external eye images. In the retrospective research, the images of bacterial keratitis (BK, n = 929), classified as Pseudomonas (n = 618) and non-Pseudomonas (n = 311) keratitis, were collected. Eight DL algorithms, including ResNet50, DenseNet121, ResNeXt50, SE-ResNet50, and EfficientNets B0 to B3, were adopted as backbone models to train and obtain the best ensemble 2-, 3-, 4-, and 5-DL models. Five-fold cross-validation was used to determine the ability of single and ensemble models to diagnose Pseudomonas keratitis. The EfficientNet B2 model had the highest accuracy (71.2%) of the eight single-DL models, while the best ensemble 4-DL model showed the highest accuracy (72.1%) among the ensemble models. However, no statistical difference was shown in the area under the receiver operating characteristic curve and diagnostic accuracy among these single-DL models and among the four best ensemble models. As a proof of concept, the DL approach, via external eye photos, could assist in identifying Pseudomonas keratitis from BK patients. All the best ensemble models can enhance the performance of constituent DL models in diagnosing Pseudomonas keratitis, but the enhancement effect appears to be limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.