This paper presents an Artificial Intelligence approach to mining context and emotions related to olfactory cultural heritage narratives, particularly to fairy tales. We provide an overview of the role of smell and emotions in literature, as well as highlight the importance of olfactory experience and emotions from psychology and linguistic perspectives. We introduce a methodology for extracting smells and emotions from text, as well as demonstrate the context-based visualizations related to smells and emotions implemented in a novel smell tracker tool. The evaluation is performed using a collection of fairy tales from Grimm and Andersen. We find out that fairy tales often connect smell with the emotional charge of situations. The experimental results show that we can detect smells and emotions in fairy tales with an F1 score of 91.62 and 79.2, respectively.
In this paper, a novel feature selection algorithm for inference from high-dimensional data (FASTENER) is presented. With its multi-objective approach, the algorithm tries to maximize the accuracy of a machine learning algorithm with as few features as possible. The algorithm exploits entropy-based measures, such as mutual information in the crossover phase of the iterative genetic approach. FASTENER converges to a (near) optimal subset of features faster than other multi-objective wrapper methods, such as POSS, DT-forward and FS-SDS, and achieves better classification accuracy than similarity and information theory-based methods currently utilized in earth observation scenarios. The approach was primarily evaluated using the earth observation data set for land-cover classification from ESA’s Sentinel-2 mission, the digital elevation model and the ground truth data of the Land Parcel Identification System from Slovenia. For land cover classification, the algorithm gives state-of-the-art results. Additionally, FASTENER was tested on open feature selection data sets and compared to the state-of-the-art methods. With fewer model evaluations, the algorithm yields comparable results to DT-forward and is superior to FS-SDS. FASTENER can be used in any supervised machine learning scenario.
This paper presents an Artificial Intelligence approach to mining context and emotions related to olfactory cultural heritage narratives, in particular to fairy tales. We provide an overview of the role of smell and emotions in literature, as well as highlight the importance of olfactory experience and emotions from psychology and linguistic perspectives. We introduce a methodology for extracting smells and emotions from text, as well as demonstrate the context-based visualizations related to smells and emotions implemented in a novel Smell Tracker tool. The evaluation is performed using a collection of fairy tales from Grimm and Andersen. We find out that fairy tales often connect smell with emotional charge of situations. The experimental results show that we can detect smells and emotions with F1 score of 92.7 and 79.2, respectively.
This paper presents an Artificial Intelligence approach to mining context and emotions related to olfactory cultural heritage narratives, in particular to fairy tales. We provide an overview of the role of smell and emotions in literature, as well as highlight the importance of olfactory experience and emotions from psychology and linguistic perspectives. We introduce a methodology for extracting smells and emotions from text, as well as demonstrate the context-based visualizations related to smells and emotions implemented in a novel Smell Tracker tool. The evaluation is performed using a collection of fairy tales from Grimm and Andersen. We find out that fairy tales often connect smell with emotional charge of situations. The experimental results show that we can detect smells and emotions with F1 score of 92.7 and 79.2, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.