BackgroundFalls in the elderly is nowadays a major concern because of their consequences on elderly general health and moral states. Moreover, the aging of the population and the increasing life expectancy make the prediction of falls more and more important. The analysis presented in this article makes a first step in this direction providing a way to analyze gait and classify hospitalized elderly fallers and non-faller. This tool, based on an accelerometer network and signal processing, gives objective informations about the gait and does not need any special gait laboratory as optical analysis do. The tool is also simple to use by a non expert and can therefore be widely used on a large set of patients.MethodA population of 20 hospitalized elderlies was asked to execute several classical clinical tests evaluating their risk of falling. They were also asked if they experienced any fall in the last 12 months. The accelerations of the limbs were recorded during the clinical tests with an accelerometer network distributed on the body. A total of 67 features were extracted from the accelerometric signal recorded during a simple 25 m walking test at comfort speed. A feature selection algorithm was used to select those able to classify subjects at risk and not at risk for several classification algorithms types.ResultsThe results showed that several classification algorithms were able to discriminate people from the two groups of interest: fallers and non-fallers hospitalized elderlies. The classification performances of the used algorithms were compared. Moreover a subset of the 67 features was considered to be significantly different between the two groups using a t-test.ConclusionsThis study gives a method to classify a population of hospitalized elderlies in two groups: at risk of falling or not at risk based on accelerometric data. This is a first step to design a risk of falling assessment system that could be used to provide the right treatment as soon as possible before the fall and its consequences. This tool could also be used to evaluate the risk several times during the revalidation procedure.
Stroke is the leading cause of long-term disabilities in developed countries. 73 to 88% of stroke survivors have altered upper limb function. Currently, these impairments are assessed by clinical tests or via kinematic analysis using expensive commercial visual tracking systems. This paper proposes an hybrid alternative to these costly systems. The tool proposed is based on the one hand on a low-cost camera network i.e. a visual modality, and on the other hand, an accelerometer network i.e. a kinematic modality. The offline reconstruction quality made with such a system is evaluated by comparison with the Codamotion system reconstruction. Moreover, several kinematic parameters are computed for a set of hemiparetic and healthy subjects executing reach and grasp movements. These features were computed from both systems and compared with mean of correlation factor and random effects models. The low-cost hybrid system demonstrated comparable results with those obtained from B. Caby ( ) · J. Stamatakis · B. Macq the gold standard Codamotion system for all the kinematic features analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.