The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view.
High biodiversity of forests is not predicted by traditional models, and evidence for trade‐offs those models require is limited. High‐dimensional regulation (e.g., N factors to regulate N species) has long been recognized as a possible alternative explanation, but it has not be been seriously pursued, because only a few limiting resources are evident for trees, and analysis of multiple interactions is challenging. We develop a hierarchical model that allows us to synthesize data from long‐term, experimental, data sets with processes that control growth, maturation, fecundity, and survival. We allow for uncertainty at all stages and variation among 26 000 individuals and over time, including 268 000 tree years, for dozens of tree species. We estimate population‐level parameters that apply at the species level and the interactions among latent states, i.e., the demographic rates for each individual, every year. The former show that the traditional trade‐offs used to explain diversity are not present. Demographic rates overlap among species, and they do not show trends consistent with maintenance of diversity by simple mechanisms (negative correlations and limiting similarity). However, estimates of latent states at the level of individuals and years demonstrate that species partition environmental variation. Correlations between responses to variation in time are high for individuals of the same species, but not for individuals of different species. We demonstrate that these relationships are pervasive, providing strong evidence that high‐dimensional regulation is critical for biodiversity regulation.
Summary1. There is a rising interest in the role of species diversity in ecosystem functioning and services, including productivity. Yet, how the diversity-productivity relationship depends on species identity and abiotic conditions remains a challenging issue. 2. We analysed mixture effects on species productivity along site productivity gradients, calculated from a set of abiotic factors, in two biogeographic contexts (highlands and lowlands). We compared the productivity of 5 two-species mixtures (i.e. 10 cases of mixed species) with that of monocultures of the same species. Five main European tree species were considered: sessile oak (Quercus petraea Liebl.), Scots pine (Pinus sylvestris L.), European beech (Fagus sylvatica L.), silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) H. Karst). 3. Our data set was compiled from the 2006 to 2010 French National Forest Inventory data base and covers 2361 plots including pure and mixed stands. 4. Overall productivity of mixtures in highlands, that is European beech-Norway spruce, European beech-silver fir and to a lesser extent, silver fir-Norway spruce, was found to be higher than expected from the productivity of corresponding monospecific stands. Overyielding was mainly due to European beech for the first two mixtures and to silver fir for the third one. 5. No effect of mixture was found for sessile oak-Scots pine and sessile oak-European beech stands in lowlands. Overyielding of sessile oak mixed with Scots pine was not strong enough to significantly increase overall stand productivity. Overyielding of European beech was balanced by an underyielding of sessile oak. 6. The mixture effect changed along site productivity gradients for six cases out of the 10 studied, with a stronger and positive effect on sites with low productivity. The magnitude of this change along site productivity gradients varied up to 89% depending on the tree species. 7. Synthesis. The nature of species interaction in mixtures with regard to productivity changes with species assemblage and abiotic conditions. Overyielding is strongest when species grow in highlands on less productive sites. A negative link between mixture effect and site productivity was found, in line with the stress-gradient hypothesis.
Summary1. Plant interactions play a central role in regulating plant communities and this role can be altered by abiotic stress. With increasing stress, ecological theory predicts that the role of competition decreases whilst that of facilitation increases. Such predictions have been tested with short-term plant removal experiments using two distinct indices evaluating the role of plant interactions: the intensity (absolute impact) and the importance (impact relative to that of other abiotic constraints) of plant interactions. 2. Using data on individual tree radial growth from more than 17 000 forest plots covering the habitat conditions of 16 species in the Alps and the Jura mountains of France, we show that nonmanipulative estimates of plant interactions provide an alternative to this experimental approach. We developed a Bayesian neighbourhood growth competition model to test theoretical predictions about plant-plant interactions with a much larger spatio-temporal scope and set of study species than classically used in experimental studies of plant-plant interactions. 3. Our analyses revealed that competition -measured as neighbours effects on adult tree growthvaries in importance but not in intensity along two major bioclimatic gradients (degree-day sum and water availability). Observed patterns of competition importance differed between shade-tolerant and shade-intolerant tree species. First, the mean importance of competition was found to be much higher for shade-intolerant species. Second, for shade-intolerant species the importance of competition remained high even at low crowding indices (i.e. at a low competitor density), whereas for shade-tolerant species competition only became important at high crowding indices. 4. Synthesis. Our non-manipulative approach to the study of plant-plant interactions allows analysing interactions among many species over large climatic gradients. Our results clearly demonstrate that a quantitative estimation of density dependence effects is key to understanding how plantplant interactions vary along abiotic gradients. Growth predictions derived from our model can easily be integrated with other results on tree regeneration and mortality in individual-based models to investigate how plant-plant interactions drive tree population and community dynamics under varying climatic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.