A multichannel MAC improves throughput in wireless mesh networks by multiplexing transmissions across orthogonal channels. In this paper, we propose an efficient way for constructing the wireless mesh structure associated with Molecular MAC, a multichannel MAC layer for efficient packet forwarding. Molecular MAC outperforms other classical approaches, but requires a specific structure for efficient operation. First, we propose a centralized protocol that provides an upper bound for constructing such a molecular structure through a MILP (Mixed Integer Linear Programming) formulation that maximizes network capacity. Then, we present two distributed self-stabilizing heuristic protocols derived from the protocols for constructing respectively a Maximum Independent Set and a Spanning Tree. We compare the performance of the proposed protocols in terms of network capacity and route length.
International audienceThe problem presented in this paper is a generalization of the usual coupled-tasks scheduling problem in presence of compatibility constraints. The reason behind this study is the data acquisition problem for a submarine torpedo. We investigate a particular configuration for coupled tasks (any task is divided into two sub-tasks separated by an idle time), in which the idle time of a coupled task is equal to the sum of durations of its two sub-tasks. We prove -completeness of the minimization of the schedule length, we show that finding a solution to our problem amounts to solving a graph problem, which in itself is close to the minimum-disjoint-path cover (min-DCP) problem. We design a (3a+2b)/(2a+2b)-approximation, where a and b (the processing time of the two sub-tasks) are two input data such as a>b>0, and that leads to a ratio between 3/2 and 5/4. Using a polynomial-time algorithm developed for some class of graph of min-DCP, we show that the ratio decreases to 1.37
A multi-channel MAC seems to be an interesting approach for improving network throughput by multiplexing transmissions over orthogonal channels. In particular, Molecular MAC has recently proposed to modify the standard IEEE 802.11 DCF access method to use dynamic channel switching for efficient packet forwarding over multiple hops. However, this MAC layer requires role and channel assignment to nodes: some of them use a static channel, while others dynamically switch to neighbor channels on-demand. To assign roles and channels, we extend the notion of the Weakly Connected Dominating Set, the structure already used in clustering. More precisely, we adapt the WCDS structure and introduce new constraints to define what we call a reversible WCDS (r-WCDS), which is particularly suitable for wireless mesh networks operating under Molecular MAC. We propose a divide-and-conquer scheme that partitions the network into clusters with one leader per cluster solving a MILP formulation to assign roles in its cluster. By appropriately defining the roles at the border of clusters, we maintain global connectivity in the r-WCDS. Finally, our simulations show that the performance of the propose scheme is close to a centralized algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.