The multiplicative structure of the trivial symplectic groupoid over R d associated to the zero Poisson structure can be expressed in terms of a generating function. We address the problem of deforming such a generating function in the direction of a non-trivial Poisson structure so that the multiplication remains associative. We prove that such a deformation is unique under some reasonable conditions and we give the explicit formula for it. This formula turns out to be the semi-classical approximation of Kontsevich's deformation formula. For the case of a linear Poisson structure, the deformed generating function reduces exactly to the CBH formula of the associated Lie algebra. The methods used to prove existence are interesting in their own right as they come from an at first sight unrelated domain of mathematics: the Runge-Kutta theory of the numeric integration of ODE's.
This paper has two parts. The first part is a review and extension of the methods of integration of Leibniz algebras into Lie racks, including as new feature a new way of integrating 2-cocycles (see Lemma 3.9).In the second part, we use the local integration of a Leibniz algebra h using a Baker-Campbell-Hausdorff type formula in order to deformation quantize its linear dual h * . More precisely, we define a natural rack product on the set of exponential functions which extends to a rack action on C ∞ (h * ).
We adapt the notion of generating functions for lagrangian submanifolds to symplectic microgeometry. We show that a symplectic micromorphism always admits a global generating function. As an application, we describe hamiltonian flows as special symplectic micromorphisms whose local generating functions are the solutions of Hamilton-Jacobi equations. We obtain a purely categorical formulation of the temporal evolution in classical mechanics. Abstract. We adapt the notion of generating functions for lagrangian submanifolds to symplectic microgeometry. We show that a symplectic micromorphism always admits a global generating function. As an application, we describe hamiltonian flows as special symplectic micromorphisms whose local generating functions are the solutions of Hamilton-Jacobi equations. We obtain a purely categorical formulation of the temporal evolution in classical mechanics.
We introduce the notion of symplectic microfolds and symplectic micromorphisms between them. They form a symmetric monoidal category, which is a version of the "category" of symplectic manifolds and canonical relations obtained by localizing them around lagrangian submanifolds in the spirit of Milnor's microbundles.
Abstract. We study the relationship between several constructions of symplectic realizations of a given Poisson manifold. Our main result is a general formula for a formal symplectic realization in the case of an arbitrary Poisson structure on R n . This formula is expressed in terms of rooted trees and elementary differentials, building on the work of Butcher, and the coefficients are shown to be a generalization of Bernoulli numbers appearing in the linear Poisson case. We also show that this realization coincides with a formal version of the original construction of Weinstein, when suitably put in global Darboux form, and with the realization coming from tree-level part of Kontsevich's star product. We provide a simple iterated integral expression for the relevant coefficients and show that they coincide with underlying Kontsevich weights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.