In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses) or occasionally imported (dengue, yellow fever viruses). Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.
Q fever is a zoonosis caused by Coxiella burnetii, a bacterium largely carried by ruminants and shed into milk, vaginal mucus, and feces. The main potential hazard to humans and animals is due to shedding of bacteria that can then persist in the environment and be aerosolized. The purpose of this study was to evaluate shedding after an outbreak of Q fever abortion in goat herds and to assess the relationship with the occurrence of abortions and antibody responses. Aborting and nonaborting goats were monitored by PCR for C. burnetii shedding 15 and 30 days after the abortion episodes. PCR analysis of all samples showed that 70% (n ؍ 50) of the aborting and 53% (n ؍ 70) of the nonaborting goats were positive. C. burnetii was shed into vaginal mucus, feces, and milk of 44%, 21%, and 38%, respectively, of goats that aborted and 27%, 20%, and 31%, respectively, of goats that delivered normally. Statistical comparison of these shedding results did not reveal any difference between these two groups. PCR results obtained for the vaginal and fecal routes were concordant in 81% of cases, whereas those for milk correlated with only 49% of cases with either vaginal or fecal shedding status. Serological analysis, using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and complement fixation tests, showed that at least 24% of the seronegative goats shed bacteria. Positive vaginal and fecal shedding, unlike positive milk shedding, was observed more often in animals that were weakly positive or negative by ELISA or IFA. Two opposite shedding trends were thus apparent for the milk and vaginal-fecal routes. Moreover, this study showed that a nonnegligible proportion of seronegative animals that delivered normally could excrete C. burnetii.
The molecular fingerprints of 1,349 isolates of Mycobacterium bovis received between 1979 and August 2000 at Agence Française de Sécurité Sanitaire des Aliments (Afssa) have been obtained by spoligotyping. The majority of the isolates (1,266) were obtained from cattle living in France. An apparently high level of heterogeneity was observed between isolates. One hundred sixty-one spoligotypes were observed in total, of which 153 were from French isolates. The two predominant spoligotypes, designated BCG-like and GB54, accounted for 26 and 12% of the isolates, respectively. In addition, 84% of the spoligotypes were found fewer than 10 times. Analysis of the results by clustering and parsimony-based algorithms revealed that the majority of the spoligotypes were closely related. The predominant spoligotype was identical to that of the vaccine strain Mycobacterium bovis BCG, which was isolated in France at the end of the 19th century. Some spoligotypes were closely associated with restricted geographical areas. Interestingly, some spoligotypes, which were frequently observed in France, were also observed in neighboring countries. Conversely, few spoligotypes were common to France and England, and those that were shared were observed at very different frequencies. This last point illustrates the potential role for an international data bank, which could help trace the spread of M. bovis across national borders.Bovine tuberculosis (TB) was endemic in France until the 1960s, with herd prevalence rates of 25% in 1955 (9). From this time onwards, a national program for TB control based on tuberculin skin testing with control of animal movements and total slaughter of infected herds was implemented. This control strategy resulted in a dramatic decrease in bovine tuberculosis leading to a herd prevalence rate of 0.09% in 1998 (2), suggesting that cattle are the most important reservoir, or even the sole reservoir, for Mycobacterium bovis in France. Due to the success of this control strategy, France was declared "officially free of bovine TB" by the European Commission (3).The very low level of TB in cattle has resulted in the introduction of new control strategies. Consequently, there has been a progressive reduction in the use of skin testing, with an increasing emphasis on systematic sampling of suspect lesions identified at slaughterhouses for M. bovis isolate identification and molecular typing. New laboratory tools were therefore required in order to improve the traceability of the infections and identification of the origin of the outbreak (i.e
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.