Background: This study aims to describe and test a tiered approach for assessing compliance to Environmental Quality standards (EQSs) for priority substances in biota in line with the European Water Framework Directive. This approach is based on caged gammarids and trophic magnification factors (TMFs) at the first tier, with fish analysed at the second tier at sites exceeding the EQS. A dataset was implemented by monitoring perfluorooctane (PFOS) in caged gammarids exposed at 15 sites in French rivers, and in fish muscle and rest-of- body from the same sites. Isotopic ratios (δ13C and δ15N) were also measured in gammarids and fish. Two scenarios were developed to compare measured PFOS concentrations in fish against predicted concentrations based on measures in caged gammarids and TMFs. Scenario (1) compared measured PFOS concentrations in fish fillets with predicted PFOS concentrations based on measured concentrations in caged gammarids and δ15N. Scenario (2) tested whether or not EQS exceedance was correctly predicted based on measured concentrations in caged gammarids and trophic levels (TLs) from wild fish and gammarid populations.Results: δ13C and δ15N variations showed that caged gammarids used local food resources during exposure in the field. PFOS concentrations in gammarids were fairly variable through time at each site. In fish, concentrations ranged from non-quantifiable to 250 ng g− 1 (wet weight). After adjustment to the TL at which the EQS is set, 12 sites were above the EQS for PFOS. In scenario (1), predicted concentrations were almost correct at 7 sites out of 15. Most incorrect predictions were overestimations that were slightly improved by applying a lower TMF. In scenario (2) we tested several variants for parameters involved in the predictions. The most efficient combination yielded two wrong predictions out of 15. This result was obtained with a higher TMF value, mean concentrations in gammarids from several field exposures, and a TL for gammarids at the median of the distribution in French rivers.Conclusion: The proposed tiered approach was thus efficient. However, the number of sites was relatively limited, and the dataset was biased towards EQS exceedance. The tiered approach warrants further validation.
Background : This study aims to describe and test a tiered approach for assessing compliance to Environmental Quality standards (EQSs) for priority substances in biota in line with the European Water Framework Directive. This approach is based on caged gammarids and trophic magnification factors (TMFs) at the first tier, with fish analysed at the second tier at sites predicted to exceed the EQS at the first tier. A dataset was implemented by monitoring perfluorooctane sulfonate (PFOS) in caged gammarids exposed at 15 sites in French rivers, and in fish muscle and rest-of- body from the same sites. Isotopic ratios (d 13 C and d 15 N) were also measured in gammarids and fish. Two scenarios were developed to compare measured PFOS concentrations in fish against predicted concentrations based on measures in caged gammarids and TMFs. Scenario (1) compared measured PFOS concentrations in fish fillets with predicted PFOS concentrations based on measured concentrations in caged gammarids and d 15 N. Scenario (2) tested whether or not EQS exceedance was correctly predicted based on measured concentrations in caged gammarids and trophic levels (TLs) from wild fish and gammarid populations. Results : d 13 C and d 15 N variations showed that caged gammarids used local food resources during exposure in the field. PFOS concentrations in gammarids were fairly variable through time at each site. In fish, concentrations ranged from <1 ng g -1 to 250 ng g -1 (wet weight). After adjustment to the TL at which the EQS is set, 12 sites were above the EQS for PFOS. In scenario (1), predicted concentrations were almost correct at 7 sites out of 15. Most incorrect predictions were overestimations that were slightly improved by applying a lower (neutral) TMF. In scenario (2) we tested several variants for parameters involved in the predictions. The most efficient combination yielded two wrong predictions out of 15. This result was obtained with a higher (more conservative) TMF value, mean concentrations in gammarids from several field exposures during a year, and a TL for gammarids at the median of the distribution in French rivers. Conclusion : The proposed tiered approach was thus efficient. However, the number of sites was relatively limited, and the dataset was biased towards EQS exceedance. The tiered approach warrants further validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.