. (2014) 'A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent.', Quaternary science reviews., 102 . pp. 54-84. Further information on publisher's website:http://dx.doi.org/10.1016/j.quascirev.2014.07.018Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Quaternary Science Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made to this work since it was submitted for publication. A denitive version was subsequently published in Quaternary Science Reviews, 102, 2014Reviews, 102, , 10.1016Reviews, 102, /j.quascirev.2014 Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACT An ice sheet model was constrained to reconstruct the evolution of the Greenland Ice Sheet (GrIS) from the Last Glacial Maximum (LGM) to present to improve our understanding of its response to climate change. The study involved applying a glaciological model in series with a glacial isostatic adjustment and relative sea-level (RSL) model. The model reconstruction builds upon the work of Simpson et al. (2009) through four main extensions: (1) a larger constraint database consisting of RSL and ice extent data; model improvements to the (2) climate and (3) sea-level forcing components; (4) accounting for uncertainties in non-Greenland ice. The research was conducted primarily to address datamodel misfits and to quantify inherent model uncertainties with the Earth structure and non-Greenland ice. Our new model (termed Huy3) fits the majority of observations and is characterised by a number of defining features. During the LGM, the ice sheet had an excess of 4.7 m ice-equivalent sea-level (IESL), which reached a maximum volume of 5.1 m IESL at 16.5 cal. ka BP. Modelled retreat of ice from the continental shelf progressed at different rates and timings in different sectors. Southwest and Southeast Greenland began to retreat from the continental shelf by ~16 to 14 cal. ka BP, thus responding in part to the Bølling-Allerød warm event (c. 14.5 cal. ka BP); subsequently ice at the southern tip of Greenland readvanced during the Younger Dryas cold event. In northern Greenland the ice retreated rapidly from the continental shelf upon the climatic recovery out of the Younger Dryas to present-day conditions. Upon entering the Holocene (11.7 cal. ka BP)...
Greenland ice core water isotopic composition (δ(18)O) provides detailed evidence for abrupt climate changes but is by itself insufficient for quantitative reconstruction of past temperatures and their spatial patterns. We investigate Greenland temperature evolution during the last deglaciation using independent reconstructions from three ice cores and simulations with a coupled ocean-atmosphere climate model. Contrary to the traditional δ(18)O interpretation, the Younger Dryas period was 4.5° ± 2°C warmer than the Oldest Dryas, due to increased carbon dioxide forcing and summer insolation. The magnitude of abrupt temperature changes is larger in central Greenland (9° to 14°C) than in the northwest (5° to 9°C), fingerprinting a North Atlantic origin. Simulated changes in temperature seasonality closely track changes in the Atlantic overturning strength and support the hypothesis that abrupt climate change is mostly a winter phenomenon.
We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5°C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.ice core | temperature reconstruction | Holocene climate | Greenland ice sheet I nstrumented records of temperature and environmental change extend for a few centuries at most. Although these records provide evidence of climate warming, the time span covered is relatively short compared with the centuries to millennia response times of some climate system components (1). In this respect, reconstructions of temperature and environmental changes obtained from climate proxies (e.g., sediment cores, ice cores) play a complementary role to the instrumented records by providing a longer temporal context within which to interpret the magnitude and rate of recent changes (2). Furthermore, the relatively large spatial and temporal variability captured in these reconstructions represents a useful dataset to test models of the climate system (3). Of particular interest are periods during Earth's history when the climate was warmer than at present, as these provide information that is potentially more relevant to changes in the future.In this study, we focus on the reconstruction of past climate using ice cores from the Agassiz ice cap, located on Ellesmere Island in the Canadian Arctic Archipelago (Fig. 1A). This site is of particular interest as it is located in the high Arctic, and temperature reconstructions can be compared with those from more southerly locations to estimate polar amplification of climate in the past (4). Furthermore, it is located proximal to the Greenland ice sheet, and so can be used to better constrain the climate forcing used to model the past evolution of this ice sheet.In a recent study (5), δ 18 O measurements in ice from the Agassiz (81°N) and Renland (70°N) ice caps (Fi...
To determine the long-term sensitivity of the Greenland ice sheet to a warmer climate, we explored how it responded to the Holocene thermal maximum (8-5 cal. kyr B.P.; calibrated to calendar years before present, i.e., A.D. 1950), when lake records show that local atmospheric temperatures in Greenland were 2-4 °C warmer than the present. Records from five new threshold lakes complemented with existing geological data from south of 70°N show that the ice margin was retracted behind its present-day extent in all sectors for a limited period between ca. 7 and 4 cal. kyr B.P. and in most sectors from ca. 1.5 to 1 cal. kyr B.P., in response to higher atmospheric and ocean temperatures. Ice sheet simulations constrained by observations show good correlation with the timing of minimum ice volume indicated by the threshold lake observations; the simulated volume reduction suggests a minimum contribution of 0.16 m sea-level equivalent from the entire Greenland ice sheet, with a centennial ice loss rate of as much as 100 Gt/yr for several millennia during the Holocene thermal maximum. Our results provide an estimate of the long-term rates of volume loss that can be expected in the future as regional air and ocean temperatures approach those reconstructed for the Holocene thermal maximum.
a b s t r a c tThe last deglaciation is the most recent interval of large-scale climate change that drove the Greenland ice sheet from continental shelf to within its present extent. Here, we use a database of 645 published 10 Be ages from Greenland to document the spatial and temporal patterns of retreat of the Greenland ice sheet during the last deglaciation. Following initial retreat of its marine margins, most land-based deglaciation occurred in Greenland following the end of the Younger Dryas cold period (12.9e11.7 ka). However, deglaciation in east Greenland peaked significantly earlier (13.0e11.5 ka) than that in south Greenland (11.0e10 ka) or west Greenland (10.5e7.0 ka). The terrestrial deglaciation of east and south Greenland coincide with adjacent ocean warming. 14 C ages and a recent ice-sheet model reconstruction do not capture this progression of terrestrial deglacial ages from east to west Greenland, showing deglaciation occurring later than observed in 10 Be ages. This model-data misfit likely reflects the absence of realistic ice-ocean interactions. We suggest that oceanic changes may have played an important role in driving the spatial-temporal ice-retreat pattern evident in the 10 Be data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.